In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
set | Hypothesis | μ0 | σ | n | α | |
a) | μ ≠ μ0 | 54.4 | 50.4 | 3 | 30 | 0.20 |
b) | μ > μ0 | 43 | 40.5 | 6.5 | 40 | 0.10 |
c) | μ < μ0 | 38.8 | 32 | 9.6 | 34 | 0.01 |
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = _______; test statistic = ____________
Decision: reject H0 or fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = _________ ; ______na, trivial effect, small effect,
medium effect, large effect.
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select---Reject H0 or Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =____________ ; ---Select__na,trivial effect, small
effect, medium effect, large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ______; test statistic = _______
Decision: ---Select---Reject H0 orFail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =___________ ; ---Select-_____na, trivial effect,
small effect, medium effect, large effect
a)
Ho : µ = 50.4
Ha : µ ╪ 50.4
(Two tail test)
Level of Significance , α =
0.20
population std dev , σ =
3.0000
Sample Size , n = 30
Sample Mean, x̅ = 54.4000
' ' '
Standard Error , SE = σ/√n = 3.0000 / √
30 = 0.5477
Z-test statistic= (x̅ - µ )/SE = (
54.400 - 50.4 ) /
0.5477 = 7.30
critical z value, z* = ± 1.2816
[Excel formula =NORMSINV(α/no. of tails) ]
Decision:test stat > critical , Reject null hypothesis
Cohen's d=|(mean - µ )/std dev|=
1.33 large
..............
Ho : µ = 40.5
Ha : µ > 40.5
(Right tail test)
Level of Significance , α =
0.10
population std dev , σ =
6.5000
Sample Size , n = 40
Sample Mean, x̅ = 43.0000
' ' '
Standard Error , SE = σ/√n = 6.5000 / √
40 = 1.0277
Z-test statistic= (x̅ - µ )/SE = (
43.000 - 40.5 ) /
1.0277 = 2.43
critical z value, z* =
1.2816 [Excel formula =NORMSINV(α/no. of tails)
]
Decision: test stat > criticcal , Reject null
hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.38 medium
.................
Ho : µ = 32
Ha : µ < 32
(Left tail test)
Level of Significance , α =
0.01
population std dev , σ =
9.6000
Sample Size , n = 34
Sample Mean, x̅ = 38.8000
' ' '
Standard Error , SE = σ/√n = 9.6000 / √
34 = 1.6464
Z-test statistic= (x̅ - µ )/SE = (
38.800 - 32 ) /
1.6464 = 4.13
critical z value, z* =
-2.3263 [Excel formula =NORMSINV(α/no. of tails)
]
Decision: |test stat| < |critical| Do not reject null
hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.71
medium
.................
THANKS
revert back for doubt
please upvote