Question

In: Statistics and Probability

For each of the following sets of results, compute the appropriate test statistic, test the indicated...

For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude:

set Hypothesis μ0 σ n α
a) μ ≠ μ0 54.4 50.4 3 30 0.20
b) μ > μ0 43 40.5 6.5 40 0.10
c) μ < μ0 38.8 32 9.6 34 0.01


a)
Compute the appropriate test statistic(s) to make a decision about H0.
critical value = _______; test statistic = ____________
Decision: reject H0 or fail to reject H0

Compute the corresponding effect size(s) and indicate magnitude(s).
d = _________ ; ______na, trivial effect, small effect, medium effect, large effect.

b)
Compute the appropriate test statistic(s) to make a decision about H0.
critical value = ; test statistic =
Decision: ---Select---Reject H0 or Fail to reject H0

Compute the corresponding effect size(s) and indicate magnitude(s).
d =____________ ;   ---Select__na,trivial effect, small effect, medium effect, large effect

c)
Compute the appropriate test statistic(s) to make a decision about H0.
critical value = ______; test statistic = _______
Decision: ---Select---Reject H0 orFail to reject H0

Compute the corresponding effect size(s) and indicate magnitude(s).
d =___________ ;   ---Select-_____na, trivial effect, small effect, medium effect, large effect

Solutions

Expert Solution

a)

Ho :   µ =   50.4                  
Ha :   µ ╪   50.4       (Two tail test)          
                          
Level of Significance ,    α =    0.20                  
population std dev ,    σ =    3.0000                  
Sample Size ,   n =    30                  
Sample Mean,    x̅ =   54.4000                  
                          
'   '   '                  
                          
Standard Error , SE = σ/√n =   3.0000   / √    30   =   0.5477      
Z-test statistic= (x̅ - µ )/SE = (   54.400   -   50.4   ) /    0.5477   =   7.30
                          
critical z value, z* =   ±   1.2816   [Excel formula =NORMSINV(α/no. of tails) ]              
                          

Decision:test stat > critical , Reject null hypothesis

Cohen's d=|(mean - µ )/std dev|=   1.33 large

..............

Ho :   µ =   40.5                  
Ha :   µ >   40.5       (Right tail test)          
                          
Level of Significance ,    α =    0.10                  
population std dev ,    σ =    6.5000                  
Sample Size ,   n =    40                  
Sample Mean,    x̅ =   43.0000                  
                          
'   '   '                  
                          
Standard Error , SE = σ/√n =   6.5000   / √    40   =   1.0277      
Z-test statistic= (x̅ - µ )/SE = (   43.000   -   40.5   ) /    1.0277   =   2.43
                          
critical z value, z* =       1.2816   [Excel formula =NORMSINV(α/no. of tails) ]              
                          
Decision:  test stat > criticcal , Reject null hypothesis                       
  

Cohen's d=|(mean - µ )/std dev|=   0.38 medium

.................

Ho :   µ =   32                  
Ha :   µ <   32       (Left tail test)          
                          
Level of Significance ,    α =    0.01                  
population std dev ,    σ =    9.6000                  
Sample Size ,   n =    34                  
Sample Mean,    x̅ =   38.8000                  
                          
'   '   '                  
                          
Standard Error , SE = σ/√n =   9.6000   / √    34   =   1.6464      
Z-test statistic= (x̅ - µ )/SE = (   38.800   -   32   ) /    1.6464   =   4.13
                          
critical z value, z* =       -2.3263   [Excel formula =NORMSINV(α/no. of tails) ]              
                          
Decision: |test stat| < |critical| Do not reject null hypothesis

Cohen's d=|(mean - µ )/std dev|=   0.71
medium
  

.................

THANKS

revert back for doubt

please upvote


Related Solutions

For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set hypothesis 1 2 D n α a) μ1 ≠ μ2 32.6 32.1 4.2 24 0.05 b) μ1 > μ2 101.9 95 10 27 0.01 c) μ1 < μ2 74.6 70.2 6.6 24 0.10 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value? =  ; test statistic? = Decision?:  ---Select--- Reject...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set Hypothesis μ0 σ n α a) μ ≠ μ0 51.4 50 3.6 49 0.05 b) μ > μ0 39.7 40.1 6.2 31 0.15 c) μ < μ0 31.8 30 8.9 33 0.10 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value =__________ ; test statistic = ________________ Decision:  ***(choose...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set Hypothesis μ0 n α a) μ ≠ μ0 99.9 99.1 3 26 0.05 b) μ > μ0 22.6 20.6 6.6 27 0.10 c) μ < μ0 49.1 55 8.1 23 0.01 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value =  ; test statistic =   Decision:  ---Select--- Reject H0 Fail...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set Hypothesis μ0 n α a) μ ≠ μ0 13 10.7 3.2 21 0.05 b) μ > μ0 97.5 99.8 8 18 0.01 c) μ < μ0 21.1 20 8.6 23 0.10 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value =  ; test statistic =   Decision:  ---Select--- Reject H0 Fail...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set Hypothesis μ0 σ n α a) μ ≠ μ0 54.7 55 3.9 49 0.15 b) μ > μ0 68.6 68 6.5 34 0.20 c) μ < μ0 103.3 100 9.2 47 0.05 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value =  ; test statistic =   Decision:  ---Select--- Reject H0...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set Hypothesis 1 2 D n α a) μ1 ≠ μ2 93.3 97.4 3.2 21 0.01 b) μ1 > μ2 69.8 68 8.3 22 0.05 c) μ1 < μ2 44.9 39.4 6.3 28 0.10 a) Compute the appropriate test statistic(s) to make a decision about H0. critical value =  ; test statistic = Decision:  ---Select--- Reject...
For each of the following sets of results, compute the appropriate test statistic, test the indicated...
For each of the following sets of results, compute the appropriate test statistic, test the indicated alternative hypothesis, and compute the effects size(s) indicating their magnitude: set hypothesis 1 2 1 2 n1 n2 α a) μ1 ≠ μ2 14.3 15.6 2.4 2.2 6 14 0.10 b) μ1 > μ2 69.6 64.1 3.4 3.7 15 7 0.05 c) μ1 < μ2 22.5 25.4 2.6 4.8 13 11 0.01 a) Compute the appropriate test statistic(s) to make a decision about H0....
Compute the value of an appropriate test statistic for the given hypothesis test and sample data....
Compute the value of an appropriate test statistic for the given hypothesis test and sample data. Assume that the population is normally distributed and that the sample has been randomly selected. H0: σ = 3.3 H1: σ > 3.3 n = 13 s = 7.2 α = 0.05
find the indicated test statistic, from appropriate table: 1. F test, 99% confidence, v1 = 22,...
find the indicated test statistic, from appropriate table: 1. F test, 99% confidence, v1 = 22, v2 =20 __________ 2. F test, 97.5% confidence, v1 = 6, v2 = 20 _________ 3. t test, 95% confidence, n = 12, two-tailed (note distinction between n and df) ________ 4. z test, 95% condidence, one-tailed _________ 5. μ= .7, x = 2 ________ 6. P = .40, n = 4, x =1 (cumulative) ________
For each of the following research scenarios, give the appropriate sampling distribution (i.e., test statistic) and...
For each of the following research scenarios, give the appropriate sampling distribution (i.e., test statistic) and indicate the appropriate statistical procedure to test the null hypothesis, and state the most appropriate null and alternate hypotheses A research group believes that changes in the annual extent of sea ice cover in the Beaufort Sea affects the mercury concentration in ringed seals that the people of Ulukhaktok (formerly known as Holman) NWT rely on as an important food source. They measured mercury...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT