In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
| set | Hypothesis | μ0 | σ | n | α | |
| a) | μ ≠ μ0 | 54.4 | 50.4 | 3 | 30 | 0.20 | 
| b) | μ > μ0 | 43 | 40.5 | 6.5 | 40 | 0.10 | 
| c) | μ < μ0 | 38.8 | 32 | 9.6 | 34 | 0.01 | 
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = _______; test statistic = ____________
Decision: reject H0 or fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = _________ ; ______na, trivial effect, small effect,
medium effect, large effect.
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select---Reject H0 or Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =____________ ;   ---Select__na,trivial effect, small
effect, medium effect, large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ______; test statistic = _______
Decision: ---Select---Reject H0 orFail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =___________ ;   ---Select-_____na, trivial effect,
small effect, medium effect, large effect
a)
Ho :   µ =   50.4  
           
   
Ha :   µ ╪   50.4  
    (Two tail test)      
   
          
           
   
Level of Significance ,    α =   
0.20          
       
population std dev ,    σ =   
3.0000          
       
Sample Size ,   n =    30  
           
   
Sample Mean,    x̅ =   54.4000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   3.0000   / √
   30   =   0.5477  
   
Z-test statistic= (x̅ - µ )/SE = (  
54.400   -   50.4   ) /   
0.5477   =   7.30
          
           
   
critical z value, z* =   ±   1.2816  
[Excel formula =NORMSINV(α/no. of tails) ]  
           
          
           
   
Decision:test stat > critical , Reject null hypothesis
Cohen's d=|(mean - µ )/std dev|=  
1.33 large
..............
Ho :   µ =   40.5  
           
   
Ha :   µ >   40.5  
    (Right tail test)      
   
          
           
   
Level of Significance ,    α =   
0.10          
       
population std dev ,    σ =   
6.5000          
       
Sample Size ,   n =    40  
           
   
Sample Mean,    x̅ =   43.0000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   6.5000   / √
   40   =   1.0277  
   
Z-test statistic= (x̅ - µ )/SE = (  
43.000   -   40.5   ) /   
1.0277   =   2.43
          
           
   
critical z value, z* =      
1.2816   [Excel formula =NORMSINV(α/no. of tails)
]          
   
          
           
   
Decision:  test stat > criticcal , Reject null
hypothesis           
           
  
Cohen's d=|(mean - µ )/std dev|= 0.38 medium
.................
Ho :   µ =   32  
           
   
Ha :   µ <   32  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.01          
       
population std dev ,    σ =   
9.6000          
       
Sample Size ,   n =    34  
           
   
Sample Mean,    x̅ =   38.8000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   9.6000   / √
   34   =   1.6464  
   
Z-test statistic= (x̅ - µ )/SE = (  
38.800   -   32   ) /   
1.6464   =   4.13
          
           
   
critical z value, z* =      
-2.3263   [Excel formula =NORMSINV(α/no. of tails)
]          
   
          
           
   
Decision: |test stat| < |critical| Do not reject null
hypothesis
Cohen's d=|(mean - µ )/std dev|=   0.71
medium   
.................
THANKS
revert back for doubt
please upvote