In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
set | Hypothesis | μ0 | σ | n | α | |
a) | μ ≠ μ0 | 51.4 | 50 | 3.6 | 49 | 0.05 |
b) | μ > μ0 | 39.7 | 40.1 | 6.2 | 31 | 0.15 |
c) | μ < μ0 | 31.8 | 30 | 8.9 | 33 | 0.10 |
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision: ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = _______________; *(choose one)1. na 2.
trivial effect 3. small effect 4. medium effect 5. large effect
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select--- Reject H0 or Fail to reject
H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________= ; *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision: ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________= ; *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
Ho : µ = 50
Ha : µ ╪ 50
(Two tail test)
Level of Significance , α =
0.05
population std dev , σ =
3.6000
Sample Size , n = 49
Sample Mean, x̅ = 51.4000
' ' '
Standard Error , SE = σ/√n = 3.6000 / √
49 = 0.5143
Z-test statistic= (x̅ - µ )/SE = ( 51.400
- 50 ) / 0.5143
= 2.72
critical z value, z* = ± 1.9600
[Excel formula =NORMSINV(α/no. of tails) ]
Decision:|test stat| > |critical|, Reject null hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.39
MEDIUM
..................
Ho : µ = 40.1
Ha : µ > 40.1
(Right tail test)
Level of Significance , α =
0.15
population std dev , σ =
6.2000
Sample Size , n = 31
Sample Mean, x̅ = 39.7000
' ' '
Standard Error , SE = σ/√n = 6.2000 / √
31 = 1.1136
Z-test statistic= (x̅ - µ )/SE = ( 39.700
- 40.1 ) / 1.1136
= -0.36
critical z value, z* =
1.0364 [Excel formula =NORMSINV(α/no. of tails)
]
Decision: TEST STAT < CRITICAL VALUE , Do not reject
null hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.06 SMALL
...............
Ho : µ = 30
Ha : µ < 30
(Left tail test)
Level of Significance , α =
0.10
population std dev , σ =
8.9000
Sample Size , n = 33
Sample Mean, x̅ = 31.8000
' ' '
Standard Error , SE = σ/√n = 8.9000 / √
33 = 1.5493
Z-test statistic= (x̅ - µ )/SE = ( 31.800
- 30 ) / 1.5493
= 1.16
critical z value, z* =
-1.2816 [Excel formula =NORMSINV(α/no. of tails)
]
Decision: |TEST STAT| < |CRITICAL | Do not reject null
hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.20
SMALL
..................
THANKS
revert back for doubt
please upvote