In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
| set | Hypothesis | μ0 | σ | n | α | |
| a) | μ ≠ μ0 | 51.4 | 50 | 3.6 | 49 | 0.05 | 
| b) | μ > μ0 | 39.7 | 40.1 | 6.2 | 31 | 0.15 | 
| c) | μ < μ0 | 31.8 | 30 | 8.9 | 33 | 0.10 | 
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision:  ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = _______________;    *(choose one)1. na 2.
trivial effect 3. small effect 4. medium effect 5. large effect
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =  ; test statistic =
Decision:  ---Select--- Reject H0 or Fail to reject
H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________=  ;    *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision:  ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________=  ;    *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
Ho :   µ =   50  
           
   
Ha :   µ ╪   50      
(Two tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
population std dev ,    σ =   
3.6000          
       
Sample Size ,   n =    49  
           
   
Sample Mean,    x̅ =   51.4000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   3.6000   / √
   49   =   0.5143  
   
Z-test statistic= (x̅ - µ )/SE = (   51.400  
-   50   ) /    0.5143  
=   2.72
          
           
   
critical z value, z* =   ±   1.9600  
[Excel formula =NORMSINV(α/no. of tails) ]  
           
          
           
   
Decision:|test stat| > |critical|, Reject null hypothesis
          
       
   
Cohen's d=|(mean - µ )/std dev|=   0.39
MEDIUM
..................
Ho :   µ =   40.1  
           
   
Ha :   µ >   40.1  
    (Right tail test)      
   
          
           
   
Level of Significance ,    α =   
0.15          
       
population std dev ,    σ =   
6.2000          
       
Sample Size ,   n =    31  
           
   
Sample Mean,    x̅ =   39.7000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   6.2000   / √
   31   =   1.1136  
   
Z-test statistic= (x̅ - µ )/SE = (   39.700  
-   40.1   ) /    1.1136  
=   -0.36
          
           
   
critical z value, z* =      
1.0364   [Excel formula =NORMSINV(α/no. of tails)
]          
   
          
           
   
Decision:  TEST STAT < CRITICAL VALUE , Do not reject
null hypothesis
          
           
Cohen's d=|(mean - µ )/std dev|=   0.06 SMALL
...............
Ho :   µ =   30  
           
   
Ha :   µ <   30  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.10          
       
population std dev ,    σ =   
8.9000          
       
Sample Size ,   n =    33  
           
   
Sample Mean,    x̅ =   31.8000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   8.9000   / √
   33   =   1.5493  
   
Z-test statistic= (x̅ - µ )/SE = (   31.800  
-   30   ) /    1.5493  
=   1.16
          
           
   
critical z value, z* =      
-1.2816   [Excel formula =NORMSINV(α/no. of tails)
]          
   
          
           
   
Decision: |TEST STAT| < |CRITICAL | Do not reject null
hypothesis           
Cohen's d=|(mean - µ )/std dev|=   0.20
SMALL
..................
THANKS
revert back for doubt
please upvote