In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
set | Hypothesis | μ0 | n | α | ||
a) | μ ≠ μ0 | 13 | 10.7 | 3.2 | 21 | 0.05 |
b) | μ > μ0 | 97.5 | 99.8 | 8 | 18 | 0.01 |
c) | μ < μ0 | 21.1 | 20 | 8.6 | 23 | 0.10 |
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = ; Magnitude: ---Select--- na
trivial effect small effect medium effect large effect
r2 = ;
Magnitude: ---Select--- na trivial effect small effect
medium effect large effect
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = ; Magnitude: ---Select--- na
trivial effect small effect medium effect large effect
r2 = ;
Magnitude: ---Select--- na trivial effect small effect
medium effect large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = ; Magnitude: ---Select--- na
trivial effect small effect medium effect large effect
r2 = ;
Magnitude: ---Select--- na trivial effect small effect
medium effect large effect
a)
Ho : µ = 13
Ha : µ ╪ 13 (Two tail
test)
Level of Significance , α =
0.050
population std dev , σ =
3.2000
Sample Size , n = 21
Sample Mean, x̅ =
10.7000
' ' '
Standard Error , SE = σ/√n = 3.2/√21=
0.6983
Z-test statistic= (x̅ - µ )/SE =
(10.7-13)/0.6983= -3.2937
critical z value, z* = ± 1.9600
[Excel formula =NORMSINV(α/no. of tails) ]
p-Value = 0.0010 [ Excel
formula =NORMSDIST(z) ]
Decision: p-value≤α, Reject null hypothesis
Cohen's d=|(mean - µ )/std dev|= 0.72 (large)
r² = d²/(d² + 4) = 0.11 (trivial )
b)
Ho : µ = 97.5
Ha : µ > 97.5 (Right tail
test)
Level of Significance , α =
0.010
population std dev , σ =
8.6000
Sample Size , n = 18
Sample Mean, x̅ =
99.8000
' ' '
Standard Error , SE = σ/√n = 8.6/√18=
2.0270
Z-test statistic= (x̅ - µ )/SE =
(99.8-97.5)/2.027= 1.1347
critical z value, z* =
2.3263 [Excel formula =NORMSINV(α/no. of tails) ]
p-Value = 0.1283 [ Excel
formula =NORMSDIST(z) ]
Decision: p-value>α, Do not reject null hypothesis
d, r²= Na
c)
Ho : µ = 21.1
Ha : µ < 21.1 (Left tail
test)
Level of Significance , α =
0.100
population std dev , σ =
8.6000
Sample Size , n = 23
Sample Mean, x̅ =
20.0000
' ' '
Standard Error , SE = σ/√n = 8.6/√23=
1.7932
Z-test statistic= (x̅ - µ )/SE =
(20-21.1)/1.7932= -0.6134
critical z value, z* =
-1.2816 [Excel formula =NORMSINV(α/no. of tails)
]
p-Value = 0.2698 [ Excel
formula =NORMSDIST(z) ]
Decision: p-value>α, Do not reject null hypothesis
d=Na
r² =NA
please revert for doubt