In: Statistics and Probability
For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
| set | Hypothesis | μ0 | n | α | ||
| a) | μ ≠ μ0 | 13 | 10.7 | 3.2 | 21 | 0.05 | 
| b) | μ > μ0 | 97.5 | 99.8 | 8 | 18 | 0.01 | 
| c) | μ < μ0 | 21.1 | 20 | 8.6 | 23 | 0.10 | 
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =  ; test statistic =  
Decision:  ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =  ; Magnitude:  ---Select--- na
trivial effect small effect medium effect large effect
r2 =  ;
Magnitude:  ---Select--- na trivial effect small effect
medium effect large effect
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =  ; test statistic =  
Decision:  ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =  ; Magnitude:  ---Select--- na
trivial effect small effect medium effect large effect
r2 =  ;
Magnitude:  ---Select--- na trivial effect small effect
medium effect large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =  ; test statistic =  
Decision:  ---Select--- Reject H0 Fail to reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d =  ; Magnitude:  ---Select--- na
trivial effect small effect medium effect large effect
r2 =  ;
Magnitude:  ---Select--- na trivial effect small effect
medium effect large effect
a)
Ho :   µ =   13  
Ha :   µ ╪   13   (Two tail
test)
          
Level of Significance ,    α =   
0.050  
population std dev ,    σ =   
3.2000  
Sample Size ,   n =    21  
Sample Mean,    x̅ =  
10.7000  
          
'   '   '  
          
Standard Error , SE = σ/√n =   3.2/√21=  
0.6983  
Z-test statistic= (x̅ - µ )/SE =   
(10.7-13)/0.6983=   -3.2937  
          
critical z value, z* =   ±   1.9600  
[Excel formula =NORMSINV(α/no. of tails) ]
          
p-Value   =   0.0010   [ Excel
formula =NORMSDIST(z) ]
Decision:   p-value≤α, Reject null hypothesis
      
  
Cohen's d=|(mean - µ )/std dev|=   0.72 (large)
  
r² = d²/(d² + 4) =    0.11 (trivial )
b)
Ho :   µ =   97.5  
Ha :   µ >   97.5   (Right tail
test)
          
Level of Significance ,    α =   
0.010  
population std dev ,    σ =   
8.6000  
Sample Size ,   n =    18  
Sample Mean,    x̅ =  
99.8000  
          
'   '   '  
          
Standard Error , SE = σ/√n =   8.6/√18=  
2.0270  
Z-test statistic= (x̅ - µ )/SE =   
(99.8-97.5)/2.027=   1.1347  
          
critical z value, z* =      
2.3263   [Excel formula =NORMSINV(α/no. of tails) ]
          
p-Value   =   0.1283   [ Excel
formula =NORMSDIST(z) ]
Decision:   p-value>α, Do not reject null hypothesis
      
d, r²= Na
c)
Ho :   µ =   21.1  
Ha :   µ <   21.1   (Left tail
test)
          
Level of Significance ,    α =   
0.100  
population std dev ,    σ =   
8.6000  
Sample Size ,   n =    23  
Sample Mean,    x̅ =  
20.0000  
          
'   '   '  
          
Standard Error , SE = σ/√n =   8.6/√23=  
1.7932  
Z-test statistic= (x̅ - µ )/SE =   
(20-21.1)/1.7932=   -0.6134  
          
critical z value, z* =      
-1.2816   [Excel formula =NORMSINV(α/no. of tails)
]
          
p-Value   =   0.2698   [ Excel
formula =NORMSDIST(z) ]
Decision:   p-value>α, Do not reject null hypothesis
      
d=Na
r² =NA
please revert for doubt