Question

In: Biology

The entire genome of the fruit fly Drosophila melanogaster consists of 1.65 x 108 base pairs...

The entire genome of the fruit fly Drosophila melanogaster consists of 1.65 x 108 base pairs (bp). If this organism’s DNA polymerase can copy DNA at the rate of 30 bp/sec calculate the minimum time (in days) required to replicate the entire genome. Remember there are 2 strands, and each are copied at the same time. 9,900,000,000 days 4,950,000,000 days 31.83 days 1909.7 days

Solutions

Expert Solution

DNA consists of two antiparallel strands. These two strands are connected by hydrogen bonds. When the replication of DNA takes place, at first two antiparallel strands are separated by the enzyme, Helicase and then DNA polymerases replicate those two strands at the same time [i.e. DNA replicates according to the Semiconservative model of replication]

Here, it is given in the question that the entire genome of the fruit fly (Drosophila melanogaster) consists of 1.65x108 base pairs.

So, The one strand of this DNA consists of {(1.65x108)/2} nucleotides= 8.25x107 nucleotides.

Now, DNA polymerase can copy DNA at the rate of 30 bp/sec.

The time required to replicate the one strand of this DNA is={(8.25x107)/30} seconds

= {(2.75x106)/60} minutes

= {(4.58x104)/60} hours

= (763.33)/24 days

= 31.81 days (approximately)

Two strands of DNA are copied at the same time.

Therefore, The minimum time required to replicate the entire genome is 31.81 days approximately.

So, the correct answer is 31.83 days.


Related Solutions

In the fruit fly, Drosophila melanogaster, a wingless female fly is mated to a male that...
In the fruit fly, Drosophila melanogaster, a wingless female fly is mated to a male that is white-bodied and legless. Assume that all alleles causing these phenotypes are recessive. Phenotypically wild-type F1 female progeny were mated to fully homozygous (mutant) males, and the following progeny were observed: Phenotypes Number Observed wingless                           324 wild-type                             34 white, wingless                 135 white                                   8 white, legless                   319 hairless, white, legless     32 hairless                              140 hairless, legless               9 (a) With respect to the three genes mentioned in the problem, what are the genotypes...
In the fruit fly, Drosophila melanogaster, a spineless (sp, no wing bristles) female fly is mated...
In the fruit fly, Drosophila melanogaster, a spineless (sp, no wing bristles) female fly is mated to a male that is claret (cl, dark eyes) and hairless (h, no thoracic bristles). Phenotypically wild type F1 female progeny were mated to fully homozygous (mutant) males and the following progeny (1000 total) were observed.             PHENOTYPES                    NUMBER OBSERVED             spineless                                             316             wild                                                         8             claret, spineless                                  136             claret                                                     37             claret, hairless                                    304             hairless, claret, spineless                     12             hairless                                               144             hairless, spineless                                43 What is the correct gene map for these genes?...
Use the preamble below to answer Questions 27 and 28 In the fruit fly Drosophila melanogaster,...
Use the preamble below to answer Questions 27 and 28 In the fruit fly Drosophila melanogaster, red eye colour (R) is dominant to white eye colour (r). A student wishes to perform a test cross to determine whether a female red eyed fruit fly is homozygous or heterozygous for the eye colour. The student mates the female fruit fly with a red eye coloured male and studies the offspring, which are 100% red eye. The student concludes that the genotype...
In the fruit fly Drosophila melanogaster, wild type eye color is a brick red color and...
In the fruit fly Drosophila melanogaster, wild type eye color is a brick red color and is produced by the action of two genes, one producing red color, the other brown. Vermilion is an X-linked recessive mutation that results in a bright red eye. Brown is an autosomal recessive mutation that results in a brown eye. Flies carrying both the vermilion and brown mutations produce no pigment and have white eyes. True breeding Vermilion eyed females are crossed to brown...
4) In fruit fly (Drosophila melanogaster), grayish eye color and wingless bodies are caused by recessive...
4) In fruit fly (Drosophila melanogaster), grayish eye color and wingless bodies are caused by recessive genes located on different chromosomes. Red eyes (gr+) and normal wings (wl+) are dominant to gray eyes (gr) and wingless (wl), respectively. Suppose that a true-breeding male with gray eyes and normal wings is crossed with a true-breeding female with red eyes and wingless. a) What is the genotype and phenotype of the F1? b) If these F1 individuals were allowed to intermate, what...
I need a paragraph regarding Thomas hunt and his discover with the fruit fly drosophila melanogaster...
I need a paragraph regarding Thomas hunt and his discover with the fruit fly drosophila melanogaster and how those fruit flies are good model organisms in genetics. Thank you & I’ll rate!
Look up the RPL4 gene in Drosophila melanogaster (fruit fly) in Entrez Gene. (a) (2 marks)...
Look up the RPL4 gene in Drosophila melanogaster (fruit fly) in Entrez Gene. (a) What is RefSeq accession number of the genomic sequence of the gene? What is the RefSeq accession number of the corresponding mRNA sequence of the gene? (b) Identify the same gene in Bos taurus (cattle). What is the RefSeq accession number of the genomic DNA sequence of the RPL4 gene in this animal? What is the RefSeq accession number of the corresponding mRNA sequence? (c) Using...
A researcher studying the effects of a certain pesticide on fruit flies (Drosophila melanogaster) in the...
A researcher studying the effects of a certain pesticide on fruit flies (Drosophila melanogaster) in the lab found that it binds to the spliceosomes (the enzymes that cut/splice the initial RNA transcripts) and caused the spliceosome to be non-functional. What effect would this have on the gene expression of the fruit flies?
Drosophila melanogaster (fruit flies) are excellent animals to use for studying Mendel’s laws of inheritance. Two...
Drosophila melanogaster (fruit flies) are excellent animals to use for studying Mendel’s laws of inheritance. Two Mendelian traits that are often used for these experiments are eye colour (encoded for by the ‘W’ gene) and wing shape (encoded for by the ‘Vg’ gene). The ‘W’ allele is dominant, and gives red eyes, while the ‘w’ allele is recessive and gives white eyes. The ‘Vg’ allele is dominant, and gives normal wings, while the ‘vg’ allele is recessive and gives vestigial...
You are studying 2 genes in Drosophila Melanogaster (fruit flies), Gene A and Gene B. Gene...
You are studying 2 genes in Drosophila Melanogaster (fruit flies), Gene A and Gene B. Gene A and Gene B are located on different chromosomes and therefore will undergo independent assortment. Both genes have two different alleles, a dominant allele and a recessive allele. For example: for Gene A there is a dominant allele A and a recessive allele a. Gene A determines body color and gene B determines eye color. In terms of body color, some of your flies...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT