Determine if the following series converge or diverge. If it
converges, find the sum.
a. ∑n=(3^n+1)/(2n) (upper limit of sigma∞, lower limit is
n=0)
b.∑n=(cosnπ)/(2) (upper limit of sigma∞ , lower limit is n=
1
c.∑n=(40n)/(2n−1)^2(2n+1)^2 (upper limit of sigma ∞ lower limit
is n= 1
d.)∑n = 2/(10)^n (upper limit of sigma ∞ , lower limit of sigma
n= 10)
1. Given the series:
∞∑k=1 2/k(k+2)
does this series converge or diverge?
converges
diverges
If the series converges, find the sum of the series:
∞∑k=1 2/k(k+2)=
2. Given the series:
1+1/4+1/16+1/64+⋯
does this series converge or diverge?
diverges
converges
If the series converges, find the sum of the series:
1+1/4+1/16+1/64+⋯=
Determine the expression of the electric field and the electric
potential from 0 to infinity along a hollow conductive disk and
assuming that a point charge Q is placed in its center. R1 and R2
are the inner and outer radius of the disk respectively.