Question

In: Chemistry

Part 1. Consider the following reaction at 298 K: 2H2(g)+O2(g)---->2H2O(g) ΔH=-483.6 kj/mol Calculate the following quantities:...

Part 1. Consider the following reaction at 298 K: 2H2(g)+O2(g)---->2H2O(g)

ΔH=-483.6 kj/mol

Calculate the following quantities:

ΔSsys=____J(molxK)

ΔSsurr=____J(molxK)

ΔSuniv=____J (molxK)

Part 2. For a particular reaction, ΔH = 168.1 kJ/mol and ΔS = -55.8 J/(mol·K). Calculate ΔG for this reaction at 298 K. Is this system spontaneaus as written, Is it in the reverse direction, Or is it at equilibrium?

Solutions

Expert Solution

Ans 1. The calculation of the answer is given in the picture.

Entropy of the system(∆Ssys)= -1622.8J/mol.k

Entropy of surrounding(∆Ssurr)= +1622.8 J/mol.k

Entropy of universe(∆Suniverse)= 0

Ans2. ∆G = +184728.4 J/mol = 184.728 KJ/mol

(1KJ=1000J)

This System is nonspontaneous.

Yes,it is in the reverse direction , it is not at equilibrium.

The complete calculation of the answer is given in the picture.


Related Solutions

1)Given the following data: 2H2(g) + O2(g) → 2H2O(l) ΔH = -571.6 kJ CO2(g) + 2H2O(l)...
1)Given the following data: 2H2(g) + O2(g) → 2H2O(l) ΔH = -571.6 kJ CO2(g) + 2H2O(l) → CH4(g) + 2O2(g) ΔH = +890.3 kJ C(s) + O2(g) → CO2(g) ΔH = -393.5 kJ Find the ΔH of the following reaction: C(s) + 2H2(g) → CH4(g)
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium partial pressures of NO2 and N2O4 are 1.337 atm and 0.657 atm, respectively.
Consider the reaction at 298 K SO2(g) + 2H2S(g) ? 3S(s) + 2H2O (g) The ?G
Consider the reaction at 298 K SO2(g) + 2H2S(g) ? 3S(s) + 2H2O (g) The ?G
Consider the following reaction at 298 K: 4Al(s) + 3O2(g) ==> 2Al2O3(s) Delta H= -3351.4 kJ/mol...
Consider the following reaction at 298 K: 4Al(s) + 3O2(g) ==> 2Al2O3(s) Delta H= -3351.4 kJ/mol Calculate: a. Delta Ssystem = _______J/mol*K b. Delta Ssurroundings = _______J/mol*K c. Delta S universe = _________J/mol*K
Calculate ΔH° for the reaction C4H4(g) + 2H2(g) → C4H8(g), using the following data: ΔH°combustion for...
Calculate ΔH° for the reaction C4H4(g) + 2H2(g) → C4H8(g), using the following data: ΔH°combustion for C4H4(g) = –2341 kJ/mol ΔH°combustion for H2(g) = –286 kJ/mol ΔH°combustion for C4H8(g) = –2755 kJ/mol A) –128 kJ B) 158 kJ C) –158 kJ D) 128 kJ E) None of these choices are correct.
N2H4(l) + O2(g) --> N2(g) + 2H2O (l); ΔH= -285.8 kJ How many kJ of heat...
N2H4(l) + O2(g) --> N2(g) + 2H2O (l); ΔH= -285.8 kJ How many kJ of heat will be released when 35.7 g water is generated? FW: N = 14; H = 1; O = 16.
Consider the following set of reactions: N2 + 2O2→N2O4 ,ΔH=−8 kJ/mol N2 + O2→2NO ,ΔH=180 kJ/mol...
Consider the following set of reactions: N2 + 2O2→N2O4 ,ΔH=−8 kJ/mol N2 + O2→2NO ,ΔH=180 kJ/mol The equations given in the problem introduction can be added together to give the following reaction: overall: N2O4→2NO + O2 However, one of them must be reversed, reaction 1: N2 + 2O2→N2O4 What is the enthalpy for reaction 1 reversed? reaction 1 reversed: N2O4→N2 + 2O2 Express your answer numerically in kilojoules per mole. What is the enthalpy for reaction 2?
A reaction has and △H°298 = 151 kJ/mol and △S°298 = 286 J /mol K at...
A reaction has and △H°298 = 151 kJ/mol and △S°298 = 286 J /mol K at 298 K. Calculate △G in kJ/mol.
For the reaction 2SO2(g) + O2(g) → 2SO3(g), ΔH° and ΔS° are both negative at 298...
For the reaction 2SO2(g) + O2(g) → 2SO3(g), ΔH° and ΔS° are both negative at 298 K, and the process is spontaneous at 298 K. Which of the following statements must also be true? A.ΔG is positive for the reaction at 298 K. B.The change in entropy is the driving force of the reaction. C.ΔG is temperature independent. D.The direction of the reaction may be reversed at high temperatures. E.At high temperature, ΔH becomes positive.
A. Calculate KP at 298 K for the reaction NO(g)+12O2(g)→NO2(g) assuming that ΔH∘R is constant over...
A. Calculate KP at 298 K for the reaction NO(g)+12O2(g)→NO2(g) assuming that ΔH∘R is constant over the interval 298-600 K. B. Calculate KP at 486 K for this reaction assuming that ΔH∘R is constant over the interval 298-600 K. Thank you
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT