Question

In: Mechanical Engineering

A solid propellant rocket engine gases at 3000 K stagnation temperature and 6000 kPa stagnation pressure...

A solid propellant rocket engine gases at 3000 K stagnation temperature and 6000 kPa stagnation pressure It manufactures. The exit and throat areas of the nozzle are 0,01 m2 respectively. and 0.005 m2 Adiabatic base of the produced gases 1,4 and the gas constant is 320 J / kg.K. Find the thrust produced by the rocket at a height of 25 000 m (kN).

Solutions

Expert Solution

Answer :

Thrust produced by the rocket = 27 kN

Explanation :

If u have any doubt, let me know..I will help you..


Related Solutions

Oxygen, kept at a pressure of 10.1 kPa, is heated to a temperature of 4000 K....
Oxygen, kept at a pressure of 10.1 kPa, is heated to a temperature of 4000 K. Determine the relative amounts of diatomic and monatomic oxygen that are present after the heating
Suppose the surface temperature of the Sun was 12,000 K, rather than 6000 K. a) How...
Suppose the surface temperature of the Sun was 12,000 K, rather than 6000 K. a) How much more thermal radiation would the Sun emit? b) What would happen to the Sun's wavelength of peak emission? Do you think it would still be possible to have life on Earth? Explain.
Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80...
Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80 m/s, and they exit at a pressure of 85 kPa. Assuming an isentropic efficiency of 92 percent and treating the combustion gases as air, determine (a) the exit velocity and (b) the exit temperature. Answers: (a) 728 m/s, (b) 786 K
The vapour pressure of pure liquid A at 300 K is 76.7 kPa and that of...
The vapour pressure of pure liquid A at 300 K is 76.7 kPa and that of pure liquid B is 52.0 kPa.  Assume that A and B form ideal solutions and gaseous mixtures. Consider the equilibrium composition of an ideal solution of A and B in which the total pressure above the solution is 70.5 kPa.   (a) Determine the mole fractions of A and B in the liquid solution and in the vapour phase above the solution.   (b) If the actual...
The vapour pressure of liquid A at 300 K is 76.7 kPa and that of pure...
The vapour pressure of liquid A at 300 K is 76.7 kPa and that of pure liquid B is 52.0 kPa. These two compounds form ideal liquid and gaseous mixtures. Consider the equilibrium composition of a mixture in which the mole fraction of A in the vapour is 0.350. Calculate the total pressure of the vapour and the composition of the liquid mixture.
Air enters the diffuser of a ramjet engine at 22 kPa, 228 K and a velocity...
Air enters the diffuser of a ramjet engine at 22 kPa, 228 K and a velocity of 920 m/s, decelerating to a negligible velocity at the point at which heat is added. Using cold airstandard analysis with constant specific heats at 300K, determine the following if the exit pressure is 22 kPa and heat is added at 750 kJ per kg of air: (a) The pressure at the diffuser exit, in kPa. (b) The velocity at the nozzle exit, in...
A diesel engine has an inlet at 100 kPa, 310 K and a compression ratio of...
A diesel engine has an inlet at 100 kPa, 310 K and a compression ratio of 21:1. The combustion releases 1400 kJ/kg. Find the cycle efficiency and mean effective pressure.
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric...
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric flow rate of 230 m3/s and a velocity of 265 m/s. The compressor pressure ratio is 15, and its isentropic efficiency is 87%. Air enters the turbine at 1560 K and the same pressure as at the exit of the compressor. The turbine isentropic efficiency is 89%, and the nozzle isentropic efficiency is 97%. The pressure at the nozzle exit is 18 kPa. Use...
Air at a pressure of 350 kPa, a temperature of 80°C, and a velocity of 180...
Air at a pressure of 350 kPa, a temperature of 80°C, and a velocity of 180 m/s enters a convergent–divergent nozzle. A normal shock occurs in the nozzle at a location where the Mach number is 2. If the air mass flow rate through the nozzle is 0.7 kg/s, and if the pressure on the nozzle exit plane is 260 kPa, find the nozzle throat area, the nozzle exit area, the temperatures upstream and downstream of the shock wave, and...
The air pressure inside the tube of a car tire is 353 kPa at a temperature...
The air pressure inside the tube of a car tire is 353 kPa at a temperature of 14.0 °C. What is the pressure of the air, if the temperature of the tire increases to 63.0 °C? Assume that the volume of the tube doesn't change. What is the air pressure inside the tube, if the volume of the tube is not constant, but it increases from 21.0 l to 21.9 l during the warming process described above?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT