Question

In: Physics

Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80...

Hot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80 m/s, and they exit at a pressure of 85 kPa. Assuming an isentropic efficiency of 92 percent and treating the combustion gases as air, determine (a) the exit velocity and (b) the exit temperature. Answers: (a) 728 m/s, (b) 786 K

Solutions

Expert Solution


Related Solutions

Hot combustion gases enter a gas turbine at 0.8 MPa and 0.538 m3/kg at a rate...
Hot combustion gases enter a gas turbine at 0.8 MPa and 0.538 m3/kg at a rate of 2.1 kg/s, and exit at 0.1 MPa and 2.29 m3/kg. Heat is lost from the turbine to the surroundings at a rate of 150 kW and the internal energy decreases 904 kW in the process. What is the power output of the gas turbine? (Assume no change in velocity or elevation across the turbine.)
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric...
Air enters the diffuser of a turbojet engine at 18 kPa, 216 K, with a volumetric flow rate of 230 m3/s and a velocity of 265 m/s. The compressor pressure ratio is 15, and its isentropic efficiency is 87%. Air enters the turbine at 1560 K and the same pressure as at the exit of the compressor. The turbine isentropic efficiency is 89%, and the nozzle isentropic efficiency is 97%. The pressure at the nozzle exit is 18 kPa. Use...
Determine what is the temperature of the hot combustion gas that is produced in the engine...
Determine what is the temperature of the hot combustion gas that is produced in the engine of a butanol (C4H9OH)-burning bus that uses ambient air for the combustion. Tip: write the balanced stoichiometric equation for the combustion of butanol assuming air is composed of 80% N2 and 20% O2 by volume, and derive the energy balance of the combustion. Atomic weights: C-12, H-1, O-16, N-14. For butanol: cp = 2 kJ/kg/°C; cv = 1.75 kJ/kg/°C; heat released by combustion, or...
At an altitude where the air is at 35 kPa and -40°C a turbojet aircraft flies...
At an altitude where the air is at 35 kPa and -40°C a turbojet aircraft flies with a velocity of 260 m/s. Compressor has a pressure ratio of 10, and the temperature of the gases at the turbine inlet is 1100°C. Air enters the compressor at a rate of 45 kg/s. *Part(A)* Use *hot air standard assumptions* to find (a) the temperature and pressure of the gases at the turbine exit (b) the velocity of the gases at the nozzle...
1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15...
1- Steam enters a nozzle at 500 °C and 1000 kPa with a velocity of 15 m/s. It leaves the nozzle at 200 °C and 300 kPa while losing heat at a rate of 30 kW. For an inlet area of 700 cm2, determine the velocity of the steam at the nozzle exit.?
A jet propulsion engine has an air that enter the compressor at 100 kPa and 290K....
A jet propulsion engine has an air that enter the compressor at 100 kPa and 290K. The pressure ratio across the compressor is 14 and the turbine inlet temperature is 1500K. When the air leaves the turbine, it enters the nozzle and expands to 100kPa. Determine the pressure at the nozzle inlet and the velocity of the air leaving the nozzle Important notes: Please be neat and write legibly, it’s important that I understand your writing and follow your thoughts....
Obtain manufacturers’ data on thermocouple and thermistor temperature sensors for measuring temperatures of hot combustion gases...
Obtain manufacturers’ data on thermocouple and thermistor temperature sensors for measuring temperatures of hot combustion gases from a furnace. Explain the basic operating principles of each sensor and compare the advantages and disadvantages of each device. Consider sensitivity, accuracy, calibration, and cost.
Temperatures of gases inside the combustion chamber of a four‑stroke automobile engine can reach up to...
Temperatures of gases inside the combustion chamber of a four‑stroke automobile engine can reach up to 1000 ∘C.1000 ∘C. To remove this enormous amount of heat, the engine utilizes a closed liquid‑cooled system that relies on conduction to transfer heat from the engine block into the liquid and then into the atmosphere by flowing coolant around the outside surface of each cylinder. Suppose that, in a particular 55‑cylinder engine, each cylinder has a diameter of 8.50 cm,8.50 cm, a height...
Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100...
Helium at 200 kPa, 227 C is expanded in steady flow through a nozzle to 100 kPa. At these operating conditions the nozzle efficiency is 76%. a) Making the usual nozzle assumptions, calculate the actual velocity at the nozzle exit. Start with the appropriate form of the first law. b) Calculate the actual nozzle exit temperature.
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s...
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s and exits at 85 kPa and 320 m/s. The heat losses from the nozzle to the surrounding medium at 20°C are estimated to be 3.2 kJ/kg. The table for the ideal-gas properties of air is given below. Determine the exit temperature. (Round the final answer to one decimal). The exit temperature is ______K Determine the total entropy change for this process. (Round the final...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT