Question

In: Mechanical Engineering

Air at a pressure of 350 kPa, a temperature of 80°C, and a velocity of 180...

Air at a pressure of 350 kPa, a temperature of 80°C, and a velocity of 180 m/s enters a convergent–divergent nozzle. A normal shock occurs in the nozzle at a location where the Mach number is 2. If the air mass flow rate through the nozzle is 0.7 kg/s, and if the pressure on the nozzle exit plane is 260 kPa, find the nozzle throat area, the nozzle exit area, the temperatures upstream and downstream of the shock wave, and the change in entropy through the nozzle.

Solutions

Expert Solution


Related Solutions

A mass of 0.07 kg of air at a temperature of 30°C and pressure 100 kPa...
A mass of 0.07 kg of air at a temperature of 30°C and pressure 100 kPa is compressed to a pressure of 600 kPa, according to the law: (i.e. Polytropic process, n=1.3). Determine: i.The final volume ii.The final temperature iii.The work transfer iv.The change in internal energy v.The heat transfer
Air is at 100 kPa and 150°C, and undergoes a constant pressure process. The final temperature...
Air is at 100 kPa and 150°C, and undergoes a constant pressure process. The final temperature of the air is 1000°C. a) Compute the specific volume ratio. b) Compute the boundary work (kJ/kg) c) Compute the change in specific internal energy by: 1. Using the tables. 2. Integrating the polynomial (cp) 3. Assuming constant specific heat. d) Repeat c for specific enthalpy e) Compute the heat
The air pressure inside the tube of a car tire is 353 kPa at a temperature...
The air pressure inside the tube of a car tire is 353 kPa at a temperature of 14.0 °C. What is the pressure of the air, if the temperature of the tire increases to 63.0 °C? Assume that the volume of the tube doesn't change. What is the air pressure inside the tube, if the volume of the tube is not constant, but it increases from 21.0 l to 21.9 l during the warming process described above?
Atmospheric air, at constant conditions, 102 kPa pressure and 30 ° C to a air conditioning...
Atmospheric air, at constant conditions, 102 kPa pressure and 30 ° C to a air conditioning system enters at 60% relative humidity at temperature. The volumetric flow of atmospheric air is 100 L / s. Air, It is separated from the air conditioning system at a pressure of 95 kPa and a temperature of 15 ° C at 100% relative humidity. In this process, the temperature of the condensing water is 15 ° C. This air conditioning Calculate the heat...
a tire is filled with air at 14 ∘c to a gauge pressure of 230 kpa...
a tire is filled with air at 14 ∘c to a gauge pressure of 230 kpa If the tire reaches a temperature of 35 ∘C∘C, what fraction of the original air must be removed if the original pressure of 230 kPakPa is to be maintained?
In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370...
In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370 T (K). The cycle has compression ratio of 10. In the constant volume heat addition process 1000 kJ/kg heat is added into the air. Considering variation on the specific heat of air with temperature, determine, (a) the pressure and temperature at the end of heat addition process (show the points on P-v diagram) (b) the network output (c) the thermal efficiency (d) the mean...
In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370...
In an Otto cycle air is compressed from an initial pressure 120 kPa and temperature 370 T (K). The cycle has compression ratio of 10. In the constant volume heat addition process 1000 kJ/kg heat is added into the air. Considering variation on the specific heat of air with temperature, determine, (a) the pressure and temperature at the end of heat addition process (show the points on P-v diagram) (b) the network output (c) the thermal efficiency (d) the mean...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature...
1.      Air enters a converging-diverging nozzle with a total pressure of 1100 kPa and a total temperature of 127°C.  The exit area to throat area ratio is 1.8.  The throat area is 5 cm2.  The velocity at the throat is sonic and the diverging section acts as a nozzle.  Determine the following: a.       The mass flow rate b.      The exit pressure and temperature c.       The exit Mach number d.      The exit velocity 2.      The converging-diverging nozzle now has a throat area of 100 mm2 and an exit area of 160...
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s...
Air enters a nozzle steadily at 280 kPa and 77°C with a velocity of 70 m/s and exits at 85 kPa and 320 m/s. The heat losses from the nozzle to the surrounding medium at 20°C are estimated to be 3.2 kJ/kg. The table for the ideal-gas properties of air is given below. Determine the exit temperature. (Round the final answer to one decimal). The exit temperature is ______K Determine the total entropy change for this process. (Round the final...
An adiabatic air compressor with inlet conditions of 100 kPa, 27 C and an exit pressure...
An adiabatic air compressor with inlet conditions of 100 kPa, 27 C and an exit pressure of 500 kPa has an inlet volume flow rate of 5 m3/s and operates in steady flow. Calculate the minimum power required to drive the compressor.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT