Question

In: Physics

A cylinder of radius 2.59 cm and a spherical shell of radius 6.72 cm are rolling...

A cylinder of radius 2.59 cm and a spherical shell of radius 6.72 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the cylinder\'s angular speed to the spherical shell\'s angular speed be?

Solutions

Expert Solution

Kinetic energy of the cylinder = (1/2)mV2 + (1/2)ICw2
Where m is the mass of cylinder , V is the linear velocity of cylinder, IC is the moment of inertia of cylinder and w is the angular speed.
Ic = (mr2 /2 ) where r is the radius of the cylinder
We also know that V = wr ,
w = V/r
Kinetic energy of the cylinder = (1/2)mv2 + (1/2)(mr2/2)(V/r)2 = (1/2)mv2 + (1/2)(m/2)(V2) = mV2(1/2 + 1/4)
= (3/4)mV2 ----(1)
Now for the Spherical shell
Kinetic energy of the spherical shell = (1/2)mv2 + (1/2)ISws2  
where v is the linear velocity of the spherical shell , ws is the angular speed of the spherical shell
Moment of inertia of the spherical shell (IS) = (2/3)mrs2
Kinetic energy of the spherical shell = (1/2)mv2 + (1/2)(2/3)mrs2(v/rs)2 = mv2(1/2 + 1/3) = (5/6)mv2 ---------(2)
It is given that the kinetic energy of both is same
(5/6)mv2 = (3/4)mV2 , hence
(5/6)m(wsrs)2 = (3/4)m(wr)2
(5/6)m(ws*6.72)2 = (3/4)m(w*2.59)2
37.632ws2 = 5.03w2
(w/ws)2 = (37.632/5.03)
w/ws = 2.735


Related Solutions

A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling...
A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the cylinder\'s angular speed to the spherical shell\'s angular speed be?
A sphere of radius 2.09 cm and a spherical shell of radius 6.97 cm are rolling...
A sphere of radius 2.09 cm and a spherical shell of radius 6.97 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the sphere\'s angular speed to the spherical shell\'s angular speed be? Please provide a clear explanation. I have tried to look this problem u, but I was unable to understand exactly how the solution was found.
A spherical shell of radius 2.84 cm and a sphere of radius 7.97 cm are rolling...
A spherical shell of radius 2.84 cm and a sphere of radius 7.97 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the spherical shell\'s angular speed to the sphere\'s angular speed be?
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is filled with water. A heater inside the water maintains the water at a constant temperature of 350 K. The outer surface of the shell is maintained at 280 K. The shell is made of Portland cement, which has a thermal conductivity of 0.29 W/(mK). (a) Starting from the basic equation for thermal conduction, derive the rate at which heat flows out of the water....
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A spherical shell has in inner radius Ri and an outer radius Ro. Within the shell,...
A spherical shell has in inner radius Ri and an outer radius Ro. Within the shell, a total charge Q is uniformly distributed. Calculate: a) the charge density within the shell (if you cannot get this answer, you can proceed without it). b) the electric field strength E(r) outside the shell (r > Ro). c) the electric field strength inside the shell (r< Ri). d) the electric field within the shell (Ri < r < Ro) e) show that your...
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge...
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge QQ, uniformly distributed. The interior of the shell is empty of charge and matter. Part A Find the electric field strength outside the shell, r≥Routr≥Rout. Part B Part complete Find the electric field strength in the interior of the shell, r≤Rinr≤Rin. Part C Find the electric field strength within the shell, Rin≤r≤RoutRin≤r≤Rout.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT