Question

In: Physics

Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...

Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface.

(a) Find the electric field 10.0 cm from the center of the charge distribution.

magnitude MN/C
direction ---Select--- radially inward radially outward the electric field is zero


(b) Find the electric field 22.0 cm from the center of the charge distribution.

magnitude MN/C
direction

Solutions

Expert Solution

Part A.

Given that charge on the surface of conducting spherical shell is Q = 34.8*10^-6 C

Radius of spherical shell = 12.0 cm = 0.12 m

Since charge is distributed uniformly on the surface of spherical shell, So net charge inside the shell is zero.

Now Electric field is given by:

E = k*q/r^2

for r = 10.0 cm = 0.1 m, (r < R), So net charge inside the shell is zero, which means

E = k*0/r^2 = 0 MN/C

Magnitude of electric field = 0 MN/C

Direction = the electric field is zero.

Part B.

When r = 22.0 cm = 0.22 m (r > R), So at this point electric field will be given by:

E = k*Q/r^2

E = 9*10^9*34.8*10^-6/0.22^2

E = 6.47*10^6 N/C

Since 1*10^6 N/C = 1 MN/C, So

E = magnitude of electric field = 6.47 MN/C

Direction = radially outward

Direction of electric field is away from positive charge and towards the negative charge, So since in this case charge is positive, which means electric field is away from charge radially outward

Let me know if you've any query.


Related Solutions

A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is filled with water. A heater inside the water maintains the water at a constant temperature of 350 K. The outer surface of the shell is maintained at 280 K. The shell is made of Portland cement, which has a thermal conductivity of 0.29 W/(mK). (a) Starting from the basic equation for thermal conduction, derive the rate at which heat flows out of the water....
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce....
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce. 1. Plot resistitivity as a function of temperature for some resonable range of temeratures. 2. Design a resistor made of copper that has a resistance of 50 Ohms at room remperature.
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate the electric field and the electric potential at the following distances from the center. a) r =8.0 cm electric field: MN/C electric potential: MV b) r = 36.0 cm electric field: MN/C electric potential: MV c) r = 14.0 cm electric field: MN/C electric potential: MV
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge...
A spherical shell has inner radius RinRin and outer radius RoutRout. The shell contains total charge QQ, uniformly distributed. The interior of the shell is empty of charge and matter. Part A Find the electric field strength outside the shell, r≥Routr≥Rout. Part B Part complete Find the electric field strength in the interior of the shell, r≤Rinr≤Rin. Part C Find the electric field strength within the shell, Rin≤r≤RoutRin≤r≤Rout.
An uncharged nonconductive hollow sphere of radius 11.0 cm surrounds a 12.0 µC charge located at...
An uncharged nonconductive hollow sphere of radius 11.0 cm surrounds a 12.0 µC charge located at the origin of a cartesian coordinate system. A drill with a radius of 1.00 mm is aligned along the zaxis, and a hole is drilled in the sphere. Calculate the electric flux through the hole.
A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling...
A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the cylinder\'s angular speed to the spherical shell\'s angular speed be?
Consider a spherical shell with radius R and surface charge density σ. By integrating the electric...
Consider a spherical shell with radius R and surface charge density σ. By integrating the electric field, find the potential outside and inside the shell. You should find that the potential is constant inside the shell. Why?
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
PART A A metallic spherical thin shell of radius 0.1 m is charged with a negative...
PART A A metallic spherical thin shell of radius 0.1 m is charged with a negative charge of 1 μC a) With what minimum initial velocity should I launch an electron from very far away so that it can reach the surface of the spherical shell? b) With what minimum initial velocity should I launch a proton from very far away so that it can reach the surface of the spherical shell? c) What is the value of the electric...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT