Question

In: Physics

A sphere of radius 2.09 cm and a spherical shell of radius 6.97 cm are rolling...

A sphere of radius 2.09 cm and a spherical shell of radius 6.97 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the sphere\'s angular speed to the spherical shell\'s angular speed be? Please provide a clear explanation. I have tried to look this problem u, but I was unable to understand exactly how the solution was found.

Solutions

Expert Solution

Radius of sphere = R1 = 2.09 cm = 0.0209 m

Radius of spherical shell = R2 = 6.97 cm = 0.0697 m

Both the objects have same mass.

Mass of the sphere = Mass of the spherical shell = M

Moment of inertia of the sphere = I1 = 2MR12/5

Moment of inertia of the spherical shell = I2 = 2MR22/3

Angular speed of the sphere = 1

Angular speed of the spherical shell = 2

Both the objects are rolling without slipping.

Velocity of the sphere = V1 = 1R1

Velocity of the spherical shell = V2 = 2R2

Total kinetic energy of the sphere = KE1

Total kinetic energy of the spherical shell = KE2

KE1 = MV12/2 + I112/2

KE2 = MV22/2 + I222/2

Both the objects have same total kinetic energy.

KE1 = KE2

Ratio of the sphere's angular speed to the spherical shell's angular speed = 3.64


Related Solutions

A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling...
A cylinder of radius 4.09 cm and a spherical shell of radius 7.47 cm are rolling without slipping along the same floor. The two objects have the same mass. If they are to have the same total kinetic energy, what should the ratio of the cylinder\'s angular speed to the spherical shell\'s angular speed be?
A sphere with radius a = 8 cm is in a conductive sphere shell with an...
A sphere with radius a = 8 cm is in a conductive sphere shell with an internal radius of b = 12 cm and an outer radius of c = 18 cm with a load of -200 mC. a) Determine the load distribution in the sphere and sphere shell. b) Calculate the value of the electric field in r = 0 cm, r = 4 cm, r = 8 cm, r = 10 cm, r = 14 cm, r =...
In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of...
In Figure, a solid sphere of radius a is concentric with a spherical conducting shell of inner radius b = 2.00a and outer radius c = 2.40a. The sphere has a net uniform charge q1 (> 0); the shell has a net charge q2 = -q1.What is the magnitude of the electric field at radial distances (a) r = 0, (b) r = a/2.00, (c) r = a, (d) r = 1.50a, (e) r = 2.30a, and (f)r = 3.50a?...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is filled with water. A heater inside the water maintains the water at a constant temperature of 350 K. The outer surface of the shell is maintained at 280 K. The shell is made of Portland cement, which has a thermal conductivity of 0.29 W/(mK). (a) Starting from the basic equation for thermal conduction, derive the rate at which heat flows out of the water....
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
A solid metal sphere of radius a = 1.30 cm is surrounded by a concentric spherical...
A solid metal sphere of radius a = 1.30 cm is surrounded by a concentric spherical metal shell of inner radius b = 3.40 cm and outer radius c = 3.90 cm. The inner sphere has a net charge of Q1 = 3.30 μC, and the outer spherical shell has a net charge of Q2 = -8.00 μC. What is the radial component of the electric field Er at a point located at radius r = 3.10 cm, i.e. between...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a...
1. A hollow sphere (mass 2.75 kg, radius 19.9 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 25.6o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2. 2. At t =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT