Question

In: Math

Consider a monthly return data on 20-year Treasury Bonds from 2006–2010. Year Month Return Year Month...

Consider a monthly return data on 20-year Treasury Bonds from 2006–2010.


Year Month Return Year Month Return
2006     Jan 5.39 2008     Jul 4.94
2006     Feb 4.83 2008     Aug 3.90
2006     Mar 5.41 2008     Sep 4.72
2006     Apr 4.64 2008     Oct 4.58
2006     May 4.05 2008     Nov 4.83
2006     Jun 3.41 2008     Dec 4.17
2006     Jul 3.92 2009     Jan 4.68
2006     Aug 3.46 2009     Feb 4.35
2006     Sep 5.06 2009     Mar 4.10
2006     Oct 5.44 2009     Apr 4.98
2006     Nov 4.96 2009     May 5.22
2006     Dec 4.17 2009     Jun 4.79
2007     Jan 3.48 2009     Jul 5.00
2007     Feb 4.70 2009     Aug 3.58
2007     Mar 4.38 2009     Sep 4.34
2007     Apr 3.82 2009     Oct 3.15
2007     May 4.19 2009     Nov 5.48
2007     Jun 4.35 2009     Dec 4.28
2007     Jul 3.83 2010     Jan 4.35
2007     Aug 5.42 2010     Feb 3.24
2007     Sep 3.29 2010     Mar 3.27
2007     Oct 4.00 2010     Apr 4.72
2007     Nov 3.42 2010     May 5.00
2007     Dec 3.24 2010     Jun 4.82
2008     Jan 5.21 2010     Jul 3.59
2008     Feb 4.84 2010     Aug 4.52
2008     Mar 4.59 2010     Sep 4.44
2008     Apr 3.82 2010     Oct 4.59
2008     May 3.61 2010     Nov 4.62
2008     Jun 4.34 2010     Dec 3.74



Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round intermediate calculations to 4 decimal places and final answers to 2 decimal places.)


Year

Month

y-forecast       

2011

Jan

   

2011

Feb

   

2011

Mar

   

Solutions

Expert Solution

Centered Moving Average and Deseasonalization
Centered
Moving Ratio to Seasonal Return
t Year Month Return Average CMA Indexes Deseasonalized
1 1 1 5.39 1.022 5.272
2 1 2 4.83 0.985 4.904
3 1 3 5.41 0.939 5.760
4 1 4 4.64 0.998 4.652
5 1 5 4.05 1.040 3.894
6 1 6 3.41 1.060 3.216
7 1 7 3.92 4.482 0.875 1.008 3.890
8 1 8 3.46 4.397 0.787 0.944 3.665
9 1 9 5.06 4.349 1.164 1.006 5.029
10 1 10 5.44 4.272 1.274 0.999 5.444
11 1 11 4.96 4.243 1.169 1.084 4.577
12 1 12 4.17 4.288 0.972 0.915 4.559
13 2 1 3.48 4.324 0.805 1.022 3.404
14 2 2 4.70 4.402 1.068 0.985 4.772
15 2 3 4.38 4.410 0.993 0.939 4.663
16 2 4 3.82 4.276 0.893 0.998 3.829
17 2 5 4.19 4.152 1.009 1.040 4.029
18 2 6 4.35 4.049 1.074 1.060 4.102
19 2 7 3.83 4.082 0.938 1.008 3.801
20 2 8 5.42 4.160 1.303 0.944 5.741
21 2 9 3.29 4.175 0.788 1.006 3.270
22 2 10 4.00 4.183 0.956 0.999 4.003
23 2 11 3.42 4.159 0.822 1.084 3.156
24 2 12 3.24 4.135 0.784 0.915 3.542
25 3 1 5.21 4.180 1.246 1.022 5.096
26 3 2 4.84 4.163 1.163 0.985 4.914
27 3 3 4.59 4.160 1.103 0.939 4.887
28 3 4 3.82 4.243 0.900 0.998 3.829
29 3 5 3.61 4.326 0.834 1.040 3.471
30 3 6 4.34 4.424 0.981 1.060 4.093
31 3 7 4.94 4.440 1.113 1.008 4.903
32 3 8 3.90 4.398 0.887 0.944 4.131
33 3 9 4.72 4.357 1.083 1.006 4.691
34 3 10 4.58 4.385 1.044 0.999 4.583
35 3 11 4.83 4.500 1.073 1.084 4.457
36 3 12 4.17 4.586 0.909 0.915 4.559
37 4 1 4.68 4.608 1.016 1.022 4.578
38 4 2 4.35 4.597 0.946 0.985 4.417
39 4 3 4.10 4.568 0.898 0.939 4.365
40 4 4 4.98 4.492 1.109 0.998 4.992
41 4 5 5.22 4.460 1.171 1.040 5.019
42 4 6 4.79 4.491 1.067 1.060 4.517
43 4 7 5.00 4.482 1.116 1.008 4.962
44 4 8 3.58 4.422 0.810 0.944 3.792
45 4 9 4.34 4.341 1.000 1.006 4.314
46 4 10 3.15 4.296 0.733 0.999 3.152
47 4 11 5.48 4.276 1.282 1.084 5.057
48 4 12 4.28 4.268 1.003 0.915 4.679
49 5 1 4.35 4.210 1.033 1.022 4.255
50 5 2 3.24 4.191 0.773 0.985 3.290
51 5 3 3.27 4.234 0.772 0.939 3.481
52 5 4 4.72 4.298 1.098 0.998 4.732
53 5 5 5.00 4.323 1.157 1.040 4.807
54 5 6 4.82 4.264 1.130 1.060 4.546
55 5 7 3.59 1.008 3.563
56 5 8 4.52 0.944 4.788
57 5 9 4.44 1.006 4.413
58 5 10 4.59 0.999 4.593
59 5 11 4.62 1.084 4.263
60 5 12 3.74 0.915 4.089
The deseasonalized trend equation is y = 4.4331 - 0.0025x
Forecasts for 2011:
Month Predicted y Index Forecast
Jan 4.2806 1.022 4.38
Feb 4.2781 0.985 4.21
Mar 4.2756 0.939 4.02

Related Solutions

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 4.12 Feb-06 4.44 Mar-06 4.02 Apr-06 4.79 May-06 4.01 Jun-06 3.65 Jul-06 4.07 Aug-06 4.3 Sep-06 5.49 Oct-06 3.6 Nov-06 4.71 Dec-06 3.83 Jan-07 4.14 Feb-07 3.53 Mar-07 3.68 Apr-07 4.19 May-07 3.34 Jun-07 3.51 Jul-07 3.48 Aug-07 3.68 Sep-07 4.96 Oct-07 3.42 Nov-07 4.17 Dec-07 4.25 Jan-08 5.05 Feb-08 3.23 Mar-08 5.34 Apr-08 5.15 May-08 4.58 Jun-08 4.61 Jul-08 4.25 Aug-08...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index Month Year Return 1 Jan 2006 3.34 2 Feb 2006 3.13 3 Mar 2006 4.67 4 Apr 2006 3.51 5 May 2006 3.8 6 Jun 2006 5.42 7 Jul 2006 4.6 8 Aug 2006 4.69 9 Sep 2006 4.62 10 Oct 2006 4.28 11 Nov 2006 5.08 12 Dec 2006 3.34 13 Jan 2007 3.91 14 Feb 2007 5.02 15 Mar 2007 3.91 16...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 3.13 Feb-06 4.15 ⋮ ⋮ Dec-10 4.48 Source: Federal Reserve Bank of Dallas. Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round answers to 2 decimal places.) Year Month yˆty^t 2011 Jan 2011 Feb 2011 Mar DATA: Index Month Year Return 1 Jan 2006 3.13 2 Feb 2006 4.15 3 Mar...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 5.12 Feb-06 4.14 ⋮ ⋮ Dec-10 5.47 Date Return ene-06 5.12 feb-06 4.14 mar-06 4.68 abr-06 5.25 may-06 5.35 jun-06 3.64 jul-06 4.68 ago-06 4.65 sep-06 3.55 oct-06 3.55 nov-06 4.3 dic-06 3.54 ene-07 3.8 feb-07 3.98 mar-07 4.33 abr-07 4.69 may-07 5.37 jun-07 4.74 jul-07 5.17 ago-07 3.22 sep-07 4.97 oct-07 5.13 nov-07 3.35 dic-07 3.86 ene-08 4.06 feb-08 4.64 mar-08...
Consider the following price data from 2002 to 2010 Year 2002 2003 2004 2005 2006 2007...
Consider the following price data from 2002 to 2010 Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 Price 3.34 3.56 3.61 4.06 4.25 4.37 4.68 4.59 4.81 a. Compute the simple price index using 2002 as the base year. (Round your answers to 2 decimal places.) Year Price index 2002 2003 2004 2005 2006 2007 2008 2009 2010 b. Update the index numbers with a base year revised from 2002 to 2005. (Round your answers to 2 decimal...
You have monthly data on gasoline prices in two cities—Vancouver and Toronto, for the years 2006–2010....
You have monthly data on gasoline prices in two cities—Vancouver and Toronto, for the years 2006–2010. In each month of each year, you observe the average price of gasoline in each city. Prices in Vancouver are usually higher than in Toronto, but the cities follow similar price trends, as prices rise in the summer months and respond similarly to demand and cost shocks. However, there are month-to-month fluctuations for various reasons. Starting from January 1, 2008, Vancouver imposed a carbon...
Data on all residential homes sales in Ames Iowa between 2006 and 2010. The data set...
Data on all residential homes sales in Ames Iowa between 2006 and 2010. The data set contains many explanatory variables on the quantity of physical attributes of residential homes in Iowa sold between 2006 and 2010. Most of the variables describe information a typical home buyer would like to know about a property (square footage, number of bedrooms, size of a lot, etc.) Now use the Lot.Area a. Use summary command to see descriptive statistics of Lot.Area b. what is...
QUESTION 8 Part A: Assume that interest rates on 20-year Treasury and corporate bonds are as...
QUESTION 8 Part A: Assume that interest rates on 20-year Treasury and corporate bonds are as follows: T-bond = 7.72% AAA = 8.72% A = 9.64% BBB = 10.18% The differences in these rates were probably caused primarily by: a. Real risk-free rate differences. b. Maturity risk differences. c. Default and liquidity risk differences. d. Inflation differences. e. Tax effects. Part B: Which of the following is incorrect? a. the currency’s purchasing power is reduced by a rate known as...
Return and Risk: Consider the following scenario: Rate of Return Scenario Prob. Stocks Bonds Recession .20...
Return and Risk: Consider the following scenario: Rate of Return Scenario Prob. Stocks Bonds Recession .20 - 5% 14% Normal .60 15% 8% Boom .20 25% 4%___ 1. What is the expected return for each investment? Bonds: Stocks: Portfolio (40% in bonds, 60% in stocks): 2. What is the risk for each investment? Bonds: Stocks: Portfolio (40% in bonds, 60% in stocks): 3. Which investment do you prefer? A. Bonds B. Stocks C. Portfolio 4. Investors expect the market return...
Victorian Treasury has issued 20-year bonds that pay semiannual coupons at a rate of 2.135%. The...
Victorian Treasury has issued 20-year bonds that pay semiannual coupons at a rate of 2.135%. The current market rate for similar securities is 3.5%. Assume the bond has a face value of $1000. a. What is the bond’s current market value? b. What will be the bond’s price if rates in the market decrease to 1.98%. c. Refer to your answers in part b. How do the interest rate changes affect premium bonds and discount bonds? d. Suppose the bonds...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT