Question

In: Statistics and Probability

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010.

Date Return
Jan-06 3.13
Feb-06 4.15
Dec-10 4.48


Source: Federal Reserve Bank of Dallas.

Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round answers to 2 decimal places.)

Year Month yˆty^t
2011 Jan
2011 Feb
2011 Mar

DATA:

Index Month Year Return
1 Jan 2006 3.13
2 Feb 2006 4.15
3 Mar 2006 3.18
4 Apr 2006 4.94
5 May 2006 4.34
6 Jun 2006 4.19
7 Jul 2006 5.12
8 Aug 2006 5.26
9 Sep 2006 3.81
10 Oct 2006 3.1
11 Nov 2006 3.87
12 Dec 2006 4.89
13 Jan 2007 3.94
14 Feb 2007 3.42
15 Mar 2007 4.13
16 Apr 2007 3.54
17 May 2007 4.58
18 Jun 2007 4.19
19 Jul 2007 4.62
20 Aug 2007 3.89
21 Sep 2007 3.62
22 Oct 2007 3.92
23 Nov 2007 4.46
24 Dec 2007 3.23
25 Jan 2008 4.78
26 Feb 2008 4.71
27 Mar 2008 5.05
28 Apr 2008 3.46
29 May 2008 3.15
30 Jun 2008 4.82
31 Jul 2008 3.87
32 Aug 2008 3.78
33 Sep 2008 3.22
34 Oct 2008 5.39
35 Nov 2008 4.78
36 Dec 2008 5.5
37 Jan 2009 4.8
38 Feb 2009 5.2
39 Mar 2009 3.82
40 Apr 2009 4.52
41 May 2009 3.53
42 Jun 2009 4.66
43 Jul 2009 5.46
44 Aug 2009 3.49
45 Sep 2009 3.75
46 Oct 2009 4.84
47 Nov 2009 4.83
48 Dec 2009 4.35
49 Jan 2010 4.63
50 Feb 2010 5.32
51 Mar 2010 4.75
52 Apr 2010 3.28
53 May 2010 4.8
54 Jun 2010 3.21
55 Jul 2010 4.4
56 Aug 2010 3.31
57 Sep 2010 4.81
58 Oct 2010 5.4
59 Nov 2010 3.54
60 Dec 2010 4.48

Solutions

Expert Solution

for linear trend seasonal dummies for seasonal variation
Index Month Year Return(yt) period(t) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
1 Jan 2006 3.13 1 1 0 0 0 0 0 0 0 0 0 0
2 Feb 2006 4.15 2 0 1 0 0 0 0 0 0 0 0 0
3 Mar 2006 3.18 3 0 0 1 0 0 0 0 0 0 0 0
4 Apr 2006 4.94 4 0 0 0 1 0 0 0 0 0 0 0
5 May 2006 4.34 5 0 0 0 0 1 0 0 0 0 0 0
6 Jun 2006 4.19 6 0 0 0 0 0 1 0 0 0 0 0
7 Jul 2006 5.12 7 0 0 0 0 0 0 1 0 0 0 0
8 Aug 2006 5.26 8 0 0 0 0 0 0 0 1 0 0 0
9 Sep 2006 3.81 9 0 0 0 0 0 0 0 0 1 0 0
10 Oct 2006 3.1 10 0 0 0 0 0 0 0 0 0 1 0
11 Nov 2006 3.87 11 0 0 0 0 0 0 0 0 0 0 1
12 Dec 2006 4.89 12 0 0 0 0 0 0 0 0 0 0 0
13 Jan 2007 3.94 13 1 0 0 0 0 0 0 0 0 0 0
14 Feb 2007 3.42 14 0 1 0 0 0 0 0 0 0 0 0
15 Mar 2007 4.13 15 0 0 1 0 0 0 0 0 0 0 0
16 Apr 2007 3.54 16 0 0 0 1 0 0 0 0 0 0 0
17 May 2007 4.58 17 0 0 0 0 1 0 0 0 0 0 0
18 Jun 2007 4.19 18 0 0 0 0 0 1 0 0 0 0 0
19 Jul 2007 4.62 19 0 0 0 0 0 0 1 0 0 0 0
20 Aug 2007 3.89 20 0 0 0 0 0 0 0 1 0 0 0
21 Sep 2007 3.62 21 0 0 0 0 0 0 0 0 1 0 0
22 Oct 2007 3.92 22 0 0 0 0 0 0 0 0 0 1 0
23 Nov 2007 4.46 23 0 0 0 0 0 0 0 0 0 0 1
24 Dec 2007 3.23 24 0 0 0 0 0 0 0 0 0 0 0
25 Jan 2008 4.78 25 1 0 0 0 0 0 0 0 0 0 0
26 Feb 2008 4.71 26 0 1 0 0 0 0 0 0 0 0 0
27 Mar 2008 5.05 27 0 0 1 0 0 0 0 0 0 0 0
28 Apr 2008 3.46 28 0 0 0 1 0 0 0 0 0 0 0
29 May 2008 3.15 29 0 0 0 0 1 0 0 0 0 0 0
30 Jun 2008 4.82 30 0 0 0 0 0 1 0 0 0 0 0
31 Jul 2008 3.87 31 0 0 0 0 0 0 1 0 0 0 0
32 Aug 2008 3.78 32 0 0 0 0 0 0 0 1 0 0 0
33 Sep 2008 3.22 33 0 0 0 0 0 0 0 0 1 0 0
34 Oct 2008 5.39 34 0 0 0 0 0 0 0 0 0 1 0
35 Nov 2008 4.78 35 0 0 0 0 0 0 0 0 0 0 1
36 Dec 2008 5.5 36 0 0 0 0 0 0 0 0 0 0 0
37 Jan 2009 4.8 37 1 0 0 0 0 0 0 0 0 0 0
38 Feb 2009 5.2 38 0 1 0 0 0 0 0 0 0 0 0
39 Mar 2009 3.82 39 0 0 1 0 0 0 0 0 0 0 0
40 Apr 2009 4.52 40 0 0 0 1 0 0 0 0 0 0 0
41 May 2009 3.53 41 0 0 0 0 1 0 0 0 0 0 0
42 Jun 2009 4.66 42 0 0 0 0 0 1 0 0 0 0 0
43 Jul 2009 5.46 43 0 0 0 0 0 0 1 0 0 0 0
44 Aug 2009 3.49 44 0 0 0 0 0 0 0 1 0 0 0
45 Sep 2009 3.75 45 0 0 0 0 0 0 0 0 1 0 0
46 Oct 2009 4.84 46 0 0 0 0 0 0 0 0 0 1 0
47 Nov 2009 4.83 47 0 0 0 0 0 0 0 0 0 0 1
48 Dec 2009 4.35 48 0 0 0 0 0 0 0 0 0 0 0
49 Jan 2010 4.63 49 1 0 0 0 0 0 0 0 0 0 0
50 Feb 2010 5.32 50 0 1 0 0 0 0 0 0 0 0 0
51 Mar 2010 4.75 51 0 0 1 0 0 0 0 0 0 0 0
52 Apr 2010 3.28 52 0 0 0 1 0 0 0 0 0 0 0
53 May 2010 4.8 53 0 0 0 0 1 0 0 0 0 0 0
54 Jun 2010 3.21 54 0 0 0 0 0 1 0 0 0 0 0
55 Jul 2010 4.4 55 0 0 0 0 0 0 1 0 0 0 0
56 Aug 2010 3.31 56 0 0 0 0 0 0 0 1 0 0 0
57 Sep 2010 4.81 57 0 0 0 0 0 0 0 0 1 0 0
58 Oct 2010 5.4 58 0 0 0 0 0 0 0 0 0 1 0
59 Nov 2010 3.54 59 0 0 0 0 0 0 0 0 0 0 1
60 Dec 2010 4.48 60 0 0 0 0 0 0 0 0 0 0 0

The regression output for above data taking return as dependent variable(y) and taking period(t) and seasonal dummies as independent variables is given below

Coefficients Standard Error t Stat P-value
Intercept 4.24975 0.383441215 11.08319 1.05E-14
period(t) 0.006673611 0.005562379 1.199776 0.236239
x1 -0.160590278 0.466477698 -0.34426 0.732185
x2 0.136736111 0.465780744 0.293563 0.770384
x3 -0.2439375 0.465149266 -0.52443 0.602445
x4 -0.488611111 0.464583533 -1.05172 0.298306
x5 -0.363284722 0.464083783 -0.7828 0.437671
x6 -0.235958333 0.463650232 -0.50891 0.613193
x7 0.237368056 0.463283063 0.512361 0.610798
x8 -0.517305556 0.462982436 -1.11733 0.269531
x9 -0.627979167 0.46274848 -1.35706 0.181243
x10 0.053347222 0.462581296 0.115325 0.908679
x11 -0.187326389 0.462480956 -0.40505 0.687281

The estimated equation is

Return(y)=4.24975 + 0.00667*period(t) - 0.16059*x1 + 0.13674*x2 -0.24394*x3 -0.48861*x4 - 0.363285*x5 - 0.235958*x6 + 0.237368*x7 - 0.51731*x8 - 0.6279792*x9 + 0.053347*x10 - 0.1873264*x11

The forecasts for first three months of 2011 is as below:

Year Month period(t) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Forecasted value from estimated equation(yt)
2011 Jan 61 1 0 0 0 0 0 0 0 0 0 0 4.50
2011 Feb 62 0 1 0 0 0 0 0 0 0 0 0 4.80
2011 Mar 63 0 0 1 0 0 0 0 0 0 0 0 4.43

Related Solutions

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 4.12 Feb-06 4.44 Mar-06 4.02 Apr-06 4.79 May-06 4.01 Jun-06 3.65 Jul-06 4.07 Aug-06 4.3 Sep-06 5.49 Oct-06 3.6 Nov-06 4.71 Dec-06 3.83 Jan-07 4.14 Feb-07 3.53 Mar-07 3.68 Apr-07 4.19 May-07 3.34 Jun-07 3.51 Jul-07 3.48 Aug-07 3.68 Sep-07 4.96 Oct-07 3.42 Nov-07 4.17 Dec-07 4.25 Jan-08 5.05 Feb-08 3.23 Mar-08 5.34 Apr-08 5.15 May-08 4.58 Jun-08 4.61 Jul-08 4.25 Aug-08...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 5.12 Feb-06 4.14 ⋮ ⋮ Dec-10 5.47 Date Return ene-06 5.12 feb-06 4.14 mar-06 4.68 abr-06 5.25 may-06 5.35 jun-06 3.64 jul-06 4.68 ago-06 4.65 sep-06 3.55 oct-06 3.55 nov-06 4.3 dic-06 3.54 ene-07 3.8 feb-07 3.98 mar-07 4.33 abr-07 4.69 may-07 5.37 jun-07 4.74 jul-07 5.17 ago-07 3.22 sep-07 4.97 oct-07 5.13 nov-07 3.35 dic-07 3.86 ene-08 4.06 feb-08 4.64 mar-08...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index Month Year Return 1 Jan 2006 3.34 2 Feb 2006 3.13 3 Mar 2006 4.67 4 Apr 2006 3.51 5 May 2006 3.8 6 Jun 2006 5.42 7 Jul 2006 4.6 8 Aug 2006 4.69 9 Sep 2006 4.62 10 Oct 2006 4.28 11 Nov 2006 5.08 12 Dec 2006 3.34 13 Jan 2007 3.91 14 Feb 2007 5.02 15 Mar 2007 3.91 16...
Consider the following price data from 2002 to 2010 Year 2002 2003 2004 2005 2006 2007...
Consider the following price data from 2002 to 2010 Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 Price 3.34 3.56 3.61 4.06 4.25 4.37 4.68 4.59 4.81 a. Compute the simple price index using 2002 as the base year. (Round your answers to 2 decimal places.) Year Price index 2002 2003 2004 2005 2006 2007 2008 2009 2010 b. Update the index numbers with a base year revised from 2002 to 2005. (Round your answers to 2 decimal...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] Date Energy Healthcare Jan-10 -4.89 -0.11 Feb-10 1.6 0.54 Mar-10 2.27 1.37 Apr-10 2.99 -3.84 May-10 -11.6 -5.16 Jun-10 -5.77 -0.52 Jul-10 8.69 1.52 Aug-10 -6.02 -1.08 Sep-10 10.2 8.24 Oct-10 3.85 2.3 Nov-10 2.82 -2.5 Dec-10 5.55 2 Jan-16...
The following shows a portion of the monthly returns data (in percent) for 2010-2016 for two...
The following shows a portion of the monthly returns data (in percent) for 2010-2016 for two of Vanguard's mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] DATE : ENERGY : HEALTHCARE : (Jan-10, -4.95, -0.19); (Feb-10, 1.8, 0.39); (Mar-10, 2.47, 1.18); (Apr-10, 3.14, -3.8); (May-10, -11.5, -5.09); (Jun-10, -5.95, -0.63); (Jul-10, 8.83, 1.47); (Aug-10, -5.84, -1.1); (Sep-10, 10.13, 8.32); (Oct-10, 3.98, 2.37); (Nov-10, 2.81, -2.41); (Dec-10, 5.71,...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] Date Energy Healthcare Jan-10 −4.86 −0.08 Feb-10 1.90 0.56 ⋮ ⋮ ⋮ Dec-16 0.10 −5.30 SOURCE: www.finance.yahoo.com. Click here for the Excel Data File a. Calculate the sample correlation coefficient rxy. (Round intermediate calculations to at least 4 decimal places...
You have monthly data on gasoline prices in two cities—Vancouver and Toronto, for the years 2006–2010....
You have monthly data on gasoline prices in two cities—Vancouver and Toronto, for the years 2006–2010. In each month of each year, you observe the average price of gasoline in each city. Prices in Vancouver are usually higher than in Toronto, but the cities follow similar price trends, as prices rise in the summer months and respond similarly to demand and cost shocks. However, there are month-to-month fluctuations for various reasons. Starting from January 1, 2008, Vancouver imposed a carbon...
Given the following information: Settlement date: 13 August 2001 Treasury bond maturity date: 25/11/2010 Treasury bond...
Given the following information: Settlement date: 13 August 2001 Treasury bond maturity date: 25/11/2010 Treasury bond coupon rate: 6.25 percent, paid semiannually Treasury bond quoted price: 110.20 Futures quoted price: 115.94 Futures expiry date: 28/09/2001 Repo rate: 4.9 percent Assume that the bond has a $100 million face value, and futures contract has a $1 million nominal amount. a) What is the implied repo rate? Interpret your finding. b) What is cash and carry arbitrage trade? Explain the process. c)...
THe Golfing Statistics provides data for a portion of the 2010 professional season for the top...
THe Golfing Statistics provides data for a portion of the 2010 professional season for the top 25 golfers. A) Find the best multiple regression model for predicting earnings/event as a function of the remaining variables. B) Find the best multiple regression model for predicting average score as a function of the other variables except earning sand events. Golfing Statistics Earnings/Event Events Avg. Score GIR (%)* Driving Distance Driving Accuracy (%) Putts/Round $239,493.68       22           70.37       67.9                 288.4...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT