In: Statistics and Probability
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010.
| Date | Return | 
| Jan-06 | 5.12 | 
| Feb-06 | 4.14 | 
| ⋮ | ⋮ | 
| Dec-10 | 5.47 | 
| Date | Return | 
| ene-06 | 5.12 | 
| feb-06 | 4.14 | 
| mar-06 | 4.68 | 
| abr-06 | 5.25 | 
| may-06 | 5.35 | 
| jun-06 | 3.64 | 
| jul-06 | 4.68 | 
| ago-06 | 4.65 | 
| sep-06 | 3.55 | 
| oct-06 | 3.55 | 
| nov-06 | 4.3 | 
| dic-06 | 3.54 | 
| ene-07 | 3.8 | 
| feb-07 | 3.98 | 
| mar-07 | 4.33 | 
| abr-07 | 4.69 | 
| may-07 | 5.37 | 
| jun-07 | 4.74 | 
| jul-07 | 5.17 | 
| ago-07 | 3.22 | 
| sep-07 | 4.97 | 
| oct-07 | 5.13 | 
| nov-07 | 3.35 | 
| dic-07 | 3.86 | 
| ene-08 | 4.06 | 
| feb-08 | 4.64 | 
| mar-08 | 4.83 | 
| abr-08 | 5.06 | 
| may-08 | 5.46 | 
| jun-08 | 5.22 | 
| jul-08 | 4.29 | 
| ago-08 | 4.79 | 
| sep-08 | 5.45 | 
| oct-08 | 4.85 | 
| nov-08 | 3.54 | 
| dic-08 | 4.9 | 
| ene-09 | 3.6 | 
| feb-09 | 4.48 | 
| mar-09 | 3.51 | 
| abr-09 | 3.72 | 
| may-09 | 4.24 | 
| jun-09 | 4.36 | 
| jul-09 | 5.17 | 
| ago-09 | 3.25 | 
| sep-09 | 4.74 | 
| oct-09 | 5.03 | 
| nov-09 | 5.44 | 
| dic-09 | 3.55 | 
| ene-10 | 4.21 | 
| feb-10 | 5.27 | 
| mar-10 | 5.07 | 
| abr-10 | 3.7 | 
| may-10 | 4.65 | 
| jun-10 | 4.21 | 
| jul-10 | 4.38 | 
| ago-10 | 4.29 | 
| sep-10 | 4.93 | 
| oct-10 | 4.48 | 
| nov-10 | 3.32 | 
| dic-10 | 5.47 | 
Estimate a linear trend model with seasonal dummy variables to
make forecasts for the first three months of 2011. (Round
intermediate calculations to at least 4 decimal places and final
answers to 2 decimal places.)
| Year | Month | yˆt | 
| 2011 | Jan | |
| 2011 | Feb | |
| 2011 | Mar | 
Soln
We will be calculating the seasonality of each Month (ie Jan – Dec) and use it to predict Revenue for 2011 (Jan – Dec)
Steps:
Table 1

Table 2
| 
 Season  | 
 2006  | 
 2007  | 
 2008  | 
 2009  | 
 2010  | 
 Mean  | 
 X ADJ Factor  | 
 SEASONAL INDEX  | 
 Cumulative Indx  | 
 2011 Return (Predicted)  | 
 Regression Equation: Y = a + bX  | 
|||||
| 
 Jan  | 
 97.2%  | 
 97.5%  | 
 87.2%  | 
 92.1%  | 
 93.5%  | 
 1.00  | 
 0.93  | 
 61  | 
 4.18  | 
 n  | 
 60  | 
|||||
| 
 Feb  | 
 98.1%  | 
 103.2%  | 
 112.7%  | 
 116.0%  | 
 107.5%  | 
 1.00  | 
 1.07  | 
 62  | 
 4.80  | 
 b  | 
 0.0005  | 
|||||
| 
 Mar  | 
 97.0%  | 
 98.5%  | 
 100.2%  | 
 89.8%  | 
 109.8%  | 
 99.0%  | 
 1.00  | 
 0.99  | 
 63  | 
 4.42  | 
 a  | 
 4.4392  | 
||||
| 
 Apr  | 
 109.5%  | 
 100.1%  | 
 99.8%  | 
 93.6%  | 
 81.5%  | 
 96.9%  | 
 1.00  | 
 0.97  | 
 64  | 
 4.33  | 
||||||
| 
 May  | 
 113.1%  | 
 109.9%  | 
 107.6%  | 
 101.8%  | 
 107.6%  | 
 108.0%  | 
 1.00  | 
 1.08  | 
 65  | 
 4.82  | 
 ∑ XY  | 
 8,159  | 
||||
| 
 Jun  | 
 78.2%  | 
 98.6%  | 
 105.0%  | 
 101.1%  | 
 97.7%  | 
 96.1%  | 
 1.00  | 
 0.96  | 
 66  | 
 4.29  | 
 ∑ X2  | 
 73,810  | 
||||
| 
 Jul  | 
 107.5%  | 
 113.0%  | 
 86.9%  | 
 119.7%  | 
 99.2%  | 
 105.2%  | 
 1.00  | 
 1.05  | 
 67  | 
 4.70  | 
 ∑ X  | 
 1,830  | 
||||
| 
 Aug  | 
 112.9%  | 
 70.4%  | 
 97.9%  | 
 72.8%  | 
 95.6%  | 
 89.9%  | 
 1.00  | 
 0.90  | 
 68  | 
 4.02  | 
 ∑ Y  | 
 267  | 
||||
| 
 Sep  | 
 87.4%  | 
 113.1%  | 
 114.7%  | 
 103.5%  | 
 112.4%  | 
 106.2%  | 
 1.00  | 
 1.06  | 
 69  | 
 4.75  | 
||||||
| 
 Oct  | 
 91.6%  | 
 120.8%  | 
 103.8%  | 
 108.1%  | 
 101.8%  | 
 105.2%  | 
 1.00  | 
 1.05  | 
 70  | 
 4.70  | 
||||||
| 
 Nov  | 
 114.2%  | 
 79.5%  | 
 79.5%  | 
 117.7%  | 
 97.7%  | 
 1.00  | 
 0.98  | 
 71  | 
 4.37  | 
|||||||
| 
 Dec  | 
 91.9%  | 
 95.6%  | 
 117.3%  | 
 77.4%  | 
 95.6%  | 
 1.00  | 
 0.95  | 
 72  | 
 4.27  | 
|||||||
| 
 Total  | 
 1200.9%  | 
|||||||||||||||
Final Predicted Values:
| 
 Season  | 
 2011 Return (Predicted)  | 
| 
 Jan  | 
 4.18  | 
| 
 Feb  | 
 4.80  | 
| 
 Mar  | 
 4.42  | 
| 
 Apr  | 
 4.33  | 
| 
 May  | 
 4.82  | 
| 
 Jun  | 
 4.29  | 
| 
 Jul  | 
 4.70  | 
| 
 Aug  | 
 4.02  | 
| 
 Sep  | 
 4.75  | 
| 
 Oct  | 
 4.70  | 
| 
 Nov  | 
 4.37  | 
| 
 Dec  | 
 4.27  | 
PS: If Images are not visible, Right click on image and select open image in new tab option.