In: Finance
A portfolio consists of the following two funds:
A: E(r) = 13%, Stdev = 16%, amount invested = $16,000
B: E(r) = 9%, Stdev = 12%, amount invested = $8,000
Corr(A,B) = 0.6, Risk-free rate = 4%.
What is the Sharpe ratio of the portfolio? (Hint: you need to find
portfolio return and portfolio standard deviation).
Expected Return on A = E(rA) = 13%, Standard deviation of A = σA = 16%
Expected Return on B = E(rB) = 9%, Standard deviation of B = σB = 12%
Amount invested in A = 16000, Amount invested in B = $8000
Total amount invested = 16000 + 8000 = 24000
Weight of A in the portfolio = WA = 16000/24000 = 0.666666666666667
Weight of B in the portfolio = WB = 8000/24000 = 0.333333333333333
Expected Return of the portfolio
Expected Return of the portfolio is calculated using the formula:
Expected return of portfolio = E(rP) = WA*E(rA) + WB*E(rB) = 0.666666666666667*13% + 0.333333333333333*9% = 0.1166666667 = 11.66666667 %
Standard Deviation of portfolio
Correlation between A and B = Corr(A,B) = ρ = 0.6
Variance of the portfolio is calculated using the formula:
Variance of the portfolio = σP2 = WA2*σA2 + WB2*σB2 + 2*WA*WB*ρ*σA*σB = (0.666666666666667)2*(16%)2 + (0.333333333333333)2*(12%)2 + 2*(0.666666666666667)*(0.333333333333333)*0.6*16%*12% = 0.0113777777777778 + 0.0016 + 0.00512 = 0.0180977777777778
Standard Deviation is square-root of variance
Standard Deviation of the portfolio = σP = 0.01809777777777781/2 = 0.134527981393381 = 13.4527981393381 %
Sharpe's Ratio
Expected Return on Portfolio = E(rP) = 11.66666667 %
Standard Deviation of portfolio = σP = 13.4527981393381 %
Risk-free rate = rF = 4%
Sharpe's ratio is calculated using the formula:
Sharpe's ratio = [E(rP) - rF]/σP = (11.66666667% - 4%)/13.4527981393381% = 0.0766666667/13.4527981393381% = 0.569893831052254
Answer -> Sharpe's Ratio = 0.569893831052254