In: Advanced Math
Use the golden Section search method to find the minimum of f(x)= x/5−sin(x) . Start with the range of 0 to 3, i.e., xl=0, xu=3 . Show two iterations of the Golden Section Search Method by populating the following Table. Again please do all calculations in MATLAB and make sure you have included it in your submission.
i xl f(xl) x2 f(x2) x1 f(x1) xu f(xu) d
%matlab programe
clear all
close all
f=@(x) x/5-sin(x);
xl=0;
xu=3;
tol = 0.00000001; % tolarance
N = 10; % iterations
tau = 0.618; %golden number
k=0;
x1=xl+(1-tau)*(xu-xl);
x2=xl+tau*(xu-xl);
f1=f(x1);
f2=f(x2);
while ((abs(xu-xl)>tol) && (k<N))
k=k+1
xl
xu
if(f1<f2)
xu=x2;
x2=x1;
x1=xl+(1-tau)*(xu-xl);
f1=f(x1);
f2=f(x2);
else
xl=x1;
x1=x2;
x2=xl+tau*(xu-xl);
f1=f(x1);
f2=f(x2);
end
if(f1<f2)
minimum_at_point_x1 = x1
minimumValu = f1
else
minimum_at_point_x2 = x2
minimumValue = f2
end
end
output
k = 1 xl = 0 xu = 3 minimum_at_point_x2 = 1.1460 minimumValue = -0.68192 k = 2 xl = 0 xu = 1.8540 minimum_at_point_x2 = 1.4163 minimumValue = -0.70483 k = 3 xl = 0.70823 xu = 1.8540 minimum_at_point_x1 = 1.4163 minimumValu = -0.70483 k = 4 xl = 1.1460 xu = 1.8540 minimum_at_point_x2 = 1.4163 minimumValue = -0.70483 k = 5 xl = 1.1460 xu = 1.5835 minimum_at_point_x1 = 1.4163 minimumValu = -0.70483 k = 6 xl = 1.3131 xu = 1.5835 minimum_at_point_x1 = 1.3770 minimumValu = -0.70588 k = 7 xl = 1.3131 xu = 1.4803 minimum_at_point_x2 = 1.3770 minimumValue = -0.70588 k = 8 xl = 1.3131 xu = 1.4163 minimum_at_point_x1 = 1.3770 minimumValu = -0.70588 k = 9 xl = 1.3526 xu = 1.4163 minimum_at_point_x1 = 1.3676 minimumValu = -0.70591 k = 10 xl = 1.3526 xu = 1.3920 minimum_at_point_x2 = 1.3676 minimumValue = -0.70591