Question

In: Physics

Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V...

Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V and then disconnected from the battery. They are then connected to each other in parallel with plates of like sign connected. Finally, the plate separation in one of the capacitors is doubled. (a) Find the total energy of the system of two capacitors before the plate separation is doubled. (b) Find the potential difference across each capacitor after the plate separation is doubled. (c) Calculate the work done on the system while the plate separation is doubled.

Solutions

Expert Solution


Related Solutions

A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a...
A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a 65.0­ Ω resistor. 1. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial charge? 2. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial energy? 3. What is the current through the resistor at the time when the capacitor has lost 90.0% of its initial charge? 4. What...
1. If you apply the potential difference V to a parallel plate capacitor, it is charged...
1. If you apply the potential difference V to a parallel plate capacitor, it is charged to the charge value Q. Now you double the separation between the plates keeping the same V. As a result, charge on the plates will be equal to: A. 2Q; B. 4Q; C. Q; D. Q/2; E. Q/4; 2. You have several capacitors of different capacitances. Which statement is correct? A. If the capacitors connected to a battery in series, charges on all capacitors...
Two identical plate capacitors each with the capacity C = 0.01μF are connected in parallel. The...
Two identical plate capacitors each with the capacity C = 0.01μF are connected in parallel. The capacitors were charged to a voltage of U = 300 V and disconnected from the voltage source. The plates of one of the two capacitors were then pushed apart to a distance twice the original plate distance. What charge flows through the wires?
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now doubled and a dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 16.2 μF. a. Calculate the dielectric constant of the inserted material. b. If the original capacitor was charged to a potential difference of 6.0 V and the battery was disconnected when the modifications to the capacitor was made, by what factor did the energy stored...
Six parallel-plate capacitors of identical plate separation have different plate areas
Six parallel-plate capacitors of identical plate separation have different plate areas A, different capacitances C, and different dielectrics filling the space between the plates. Part A. Rank the following capacitors on the basis of the dielectric constant of the material between the plates. Rank from largest to smallest. 1. \(A=4 \mathrm{~cm}^{2}  \quad \text {C}=2 \mathrm{nF}\) 2. \(A=1 \mathrm{~cm}^{2} \quad \mathrm{C}=1 \mathrm{nF}\) 3. \(A=2 \mathrm{~cm}^{2}  \quad \mathrm{C}=8 \mathrm{nF}\) 4. \(A=8 \mathrm{~cm}^{2}  \quad \mathrm{C}=2 \mathrm{nF}\) 5. \(A=4 \mathrm{~cm}^{2}  \quad \mathrm{C}=1 \mathrm{nF}\) 6....
Two capacitors C1 = 6.8 μF, C2 = 14.6 μF are charged individually to V1 =...
Two capacitors C1 = 6.8 μF, C2 = 14.6 μF are charged individually to V1 = 19.6 V, V2 = 3.5 V. The two capacitors are then connected together in parallel with the positive plates together and the negative plates together.Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. By how much (absolute value) is the total stored energy reduced when the two capacitors are connected? The final...
When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor,...
When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 45.0 nC/cm2. What is the spacing between the plates?
Four capacitors are placed within an 18.0 V circuit as follows: Two capacitors 30.0 μF and...
Four capacitors are placed within an 18.0 V circuit as follows: Two capacitors 30.0 μF and 65.0 μF are connected in series with the battery, followed by two capacitors 45.0 μF and 80.0 μF connected in parallel. 1. You must draw and completely label the circuit. 2. Then find the charge stored on and the voltage across each capacitor within the circuit.
1. Five hundred 8.20-µF capacitors are connected in parallel and then charged to a potential of...
1. Five hundred 8.20-µF capacitors are connected in parallel and then charged to a potential of 23.0 kV. For how long will the stored energy light a 200.0-W bulb until no energy remains in the capacitors?   ( )s 2. A 9.50-V battery is connected across two capacitors, CA = 11.5 µF and CB = 2.0 µF, connected in series. (a) What is the equivalent capacitance of the two capacitors? ( ) µF (b) How much energy is stored by such...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT