Question

In: Physics

A parallel-plate capacitor has capacitance 8.00 μF. (a) How much energy is stored in the capacitor...

A parallel-plate capacitor has capacitance 8.00 μF. (a) How much energy is stored in the capacitor if it is connected to a 13.00-V battery? μJ (b) If the battery is disconnected and the distance between the charged plates doubled, what is the energy stored? μJ (c) The battery is subsequently reattached to the capacitor, but the plate separation remains as in part (b). How much energy is stored? μJ

Solutions

Expert Solution


Related Solutions

An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now doubled and a dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 16.2 μF. a. Calculate the dielectric constant of the inserted material. b. If the original capacitor was charged to a potential difference of 6.0 V and the battery was disconnected when the modifications to the capacitor was made, by what factor did the energy stored...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
A parallel-plate vacuum capacitor has 7.64 J of energy stored in it.
A parallel-plate vacuum capacitor has 7.64 J of energy stored in it. The separation between the plates is 2.30 mm. If the separation is decreased to 1.30 mm,a) what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed?b) What is the energy now stored if the capacitor remained connected to the potential source while the separation of the plates was changed?
A parallel-plate vacuum capacitor has 7.22J of energy stored in it. The separation between the plates...
A parallel-plate vacuum capacitor has 7.22J of energy stored in it. The separation between the plates is 2.70mm . If the separation is decreased to 1.85mm , a) what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed? b) What is the energy now stored if the capacitor remained connected to the potential source while the separation of the plates was changed?
A parallel-plate vacuum capacitor has 8.22 JJ of energy stored in it. The separation between the...
A parallel-plate vacuum capacitor has 8.22 JJ of energy stored in it. The separation between the plates is 3.50 mmmm. Part A If the separation is decreased to 1.80 mmmm, what is the energy now stored if the capacitor was disconnected from the potential source before the separation of the plates was changed? Express your answer in joules. U = ?? J Part B If the separation is decreased to 1.80 mmmm, what is the energy now stored if the...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals,...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals, one (+) and the other (-). When you move a test positive charge, q at uniform velocity from the negative terminal (Ui and Vi) to the positive terminal (Uf and Vf), work W = ΔU = qΔV is done on the charge, increasing the energy of the field by this amount. The work done by the field on the charge is – W. (V...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d= 8.00...
A dielectric-filled parallel-plate capacitor has plate area A = 30.0 cm2 , plate separation d= 8.00 mm and dielectric constant k = 4.00. The capacitor is connected to a battery that creates a constant voltage V= 15.0 V . Throughout the problem, use ϵ0 = 8.85×10−12 C2/N⋅m2. A) Find the energy U1 of the dielectric-filled capacitor. Express your answer numerically in joules. B) The dielectric plate is now slowly pulled out of the capacitor, which remains connected to the battery....
An air-filled parallel-plate capacitor has a capacitance of 2.0 F when the plate spacing is 1.6...
An air-filled parallel-plate capacitor has a capacitance of 2.0 F when the plate spacing is 1.6 mm. (a) What is the area of the plates? (b) What is the maximum voltage Vmax that can be applied to this capacitor (before dielectric breakdown occurs)? (c) How much charge is stored on the capacitor when Vmax is across it? (d) How much energy is stored on the capacitor when Vmax is across it? (e) A piece of Plexiglas (with a dielectric constant...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a 12V battery and charged. The capacitor is then disconnected from the battery and a dielectric with a dielectric constant of k (3.2) is inserted between the plates. How much energy will be stored in the capacitor after inserting the dielectric (6 points)? please explain step by step
1. How is the charge stored on a capacitor related to the capacitance of the capacitor...
1. How is the charge stored on a capacitor related to the capacitance of the capacitor and the potential difference across the capacitor? a. The charge equals the product of the capacitance and the potential difference. b. The charge equals the ratio of the potential difference to the capacitance. c. The charge equals the ratio of the capacitance to the potential difference. 2. Which do we do to find the potential difference of a capacitor? a. integrate the electric field...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT