Question

In: Physics

A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a...

A 14.5-μF capacitor is charged to a potential of 40.0 V and then discharged through a 65.0­ Ω resistor.

1. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial charge?

2. How long after discharge begins does it take for the capacitor to lose 90.0% of its initial energy?

3. What is the current through the resistor at the time when the capacitor has lost 90.0% of its initial charge?

4. What is the current through the resistor at the time when the capacitor has lost 90.0% of its initial energy?

Solutions

Expert Solution


Related Solutions

A 16.5-μμF capacitor is charged to a potential of 60.0 V and then discharged through a...
A 16.5-μμF capacitor is charged to a potential of 60.0 V and then discharged through a 75.0­ ΩΩ resistor. 1) How long after discharge begins does it take for the capacitor to lose 90.0% of its initial charge? (Express your answer to three significant figures.) answer .....ms How long after discharge begins does it take for the capacitor to lose 90.0% of its initial energy? (Express your answer to three significant figures.) answer .....ms What is the current through the...
A 10.0 μF capacitor initially charged to 30.0 μC is discharged through a 1.80 kΩ resistor....
A 10.0 μF capacitor initially charged to 30.0 μC is discharged through a 1.80 kΩ resistor. How long does it take to reduce the capacitor's charge to 15.0 μC ?
The potential difference across a charged capacitor is 22 V. The capacitor discharges through a fixed...
The potential difference across a charged capacitor is 22 V. The capacitor discharges through a fixed resistor. After a time equal to the time constant, the potential difference has reduced to V. The magnitude of V is:
Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V...
Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V and then disconnected from the battery. They are then connected to each other in parallel with plates of like sign connected. Finally, the plate separation in one of the capacitors is doubled. (a) Find the total energy of the system of two capacitors before the plate separation is doubled. (b) Find the potential difference across each capacitor after the plate separation is doubled. (c)...
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power...
A 22.0 μF capacitor is charged by a 160.0-V power supply, then disconnected from the power and connected in series with a 0.240-mH inductor. Calculate the energy stored in the inductor at t = 1.45 ms .
Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the...
Given a 2.00 μF capacitor, a 5.25 μF capacitor, and a 2.50 V battery, find the charge on each capacitor if you connect them in the following ways. (a) in series across the battery 2.00 μF capacitor μC 5.25 μF capacitor (b) in parallel across the battery 2.00 μF capacitor μC 5.25 μF capacitor
A capacitor is discharged through a 30 resistor.
A capacitor is discharged through a \(30{\Omega}\) resistor. The discharge current decreases to27 \({\%}\) of its initial value in \(1.7 \mathrm{~ms}\). What is the value of the capacitor in \(\mu F ?\) Express your answer using two significant figures.
1. If you apply the potential difference V to a parallel plate capacitor, it is charged...
1. If you apply the potential difference V to a parallel plate capacitor, it is charged to the charge value Q. Now you double the separation between the plates keeping the same V. As a result, charge on the plates will be equal to: A. 2Q; B. 4Q; C. Q; D. Q/2; E. Q/4; 2. You have several capacitors of different capacitances. Which statement is correct? A. If the capacitors connected to a battery in series, charges on all capacitors...
A 8.0 µF capacitor is charged by a 11.0 V battery through a resistance R. The...
A 8.0 µF capacitor is charged by a 11.0 V battery through a resistance R. The capacitor reaches a potential difference of 4.00 V at a time 3.00 s after charging begins. Find R in kO. I've been using , but I'm not sure if that is right since I just CAN'T get the right answer...I keep getting 370.7 kO (incorrect).
(28) A 10-Micro Farat capacitor has been charged to a potential of 150 V. A resistor...
(28) A 10-Micro Farat capacitor has been charged to a potential of 150 V. A resistor of 25 Ohms is then connected across the capacitor through a switch. When the switch is closed for ten time constants, the total energy (joules) dissipated by the resistor is?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT