Question

In: Physics

When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor,...

When a potential difference of 142 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 45.0 nC/cm2. What is the spacing between the plates?

Solutions

Expert Solution

Solution:::

The capacitance of the parallel -plate capacitor is given by

  

where C.......capacitance

A.........area of overlap of two plates

......... the electric constant  

d..........the spacing between the plates

On the other hand, the capacitance is given by

  

where q.....charge of one plate

U........ the potential difference between the plates

hence The charge may be expressed in terms of the surface charge density  

i.e  

so by Considering all the formulas above we have

Therefore the spacing between the plates is d=2.79micrometers

  


Related Solutions

1. If you apply the potential difference V to a parallel plate capacitor, it is charged...
1. If you apply the potential difference V to a parallel plate capacitor, it is charged to the charge value Q. Now you double the separation between the plates keeping the same V. As a result, charge on the plates will be equal to: A. 2Q; B. 4Q; C. Q; D. Q/2; E. Q/4; 2. You have several capacitors of different capacitances. Which statement is correct? A. If the capacitors connected to a battery in series, charges on all capacitors...
A physicist builds a parallel-plate capacitor with adjustable spacing between the plates. When the plates are...
A physicist builds a parallel-plate capacitor with adjustable spacing between the plates. When the plates are at their initial separation, the capacitance is 7.00 µF. (a) At this capacitance, the capacitor is connected to a 18.00 V battery. After fully charging, how much energy (in µJ) is stored in the capacitor? (b) The battery is then disconnected. Without discharging the capacitor, the physicist then doubles the separation between the plates. At this point, how much energy (in µJ) is stored...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals,...
Electric Potential (Parallel Plate Capacitor Potential Energy and Potential) A parallel plate capacitor has two terminals, one (+) and the other (-). When you move a test positive charge, q at uniform velocity from the negative terminal (Ui and Vi) to the positive terminal (Uf and Vf), work W = ΔU = qΔV is done on the charge, increasing the energy of the field by this amount. The work done by the field on the charge is – W. (V...
A parallel plate capacitor consisting of square plates is charged. One edge of the plates is...
A parallel plate capacitor consisting of square plates is charged. One edge of the plates is 0.4 (m). When the current is 5 (A), the rate of change of the electric field between the plates is approximately how many V / (m.s). Eo = 8.85x10-12 (SI)
The plates of an air-filled parallel-plate capacitor with a plate area of 15.0 cm2 and a...
The plates of an air-filled parallel-plate capacitor with a plate area of 15.0 cm2 and a separation of 8.95 mm are charged to a 170-V potential difference. After the plates are disconnected from the source, a porcelain dielectric with κ = 6.5 is inserted between the plates of the capacitor. (a) What is the charge on the capacitor before and after the dielectric is inserted? Qi = C Qf = C (b) What is the capacitance of the capacitor after...
A parallel plate capacitor is composed of two parallel plates of aluminium foil, each with a...
A parallel plate capacitor is composed of two parallel plates of aluminium foil, each with a surface area of 2.5 m2 that are separated by 2.0 mm The foils are then oppositely charged with 5 mC of charge. a) what is the electric field between and outside of the capacitor near its middle ? b) If a dust particle (m = 0.5 ng) picks up 10,000 electrons and finds itself right near the negatively charge plate, what is its KE...
When the potential difference between the plates of a capacitor is halved, the magnitude of the...
When the potential difference between the plates of a capacitor is halved, the magnitude of the electric energy stored in the capacitor U: a. is 2U b. is U/2 c. remains the same d. is U/4 EXPLAIN.
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is filled with air. The plates are circular, with radius 2.50 cm. The capacitor is connected to a battery and a charge of magnitude 28.0 pC goes into each plate. With the capacitor still connected to the battery, a slab of dielectric is inserted between the plates, completely filling the space between the plates. After the dielectric has been inserted, the charge on each plate...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d =...
Problem 2 – The plates of a parallel-plate capacitor are separated by a distance d = 0.2 m. There is vacuum between the plates. The voltage difference between the plates is 150 V. The capacitance of the plates is 3 μF. a) (6 pts) Find the magnitude of the electric field between the plates (ignoring edge effects). b) (12 pts) An alpha particle, which is doubly ionized helium, He2+ (charge = 2e where e is the elementary charge, mass =...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant voltage source. How would the capacitance and the charge change if a dielectric of dielectric constant K=2 is inserted between the plates. C0 and Q0 are the capacitance and charge of the capacitor before the introduction of the dielectric.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT