Question

In: Physics

Two identical plate capacitors each with the capacity C = 0.01μF are connected in parallel. The...

Two identical plate capacitors each with the capacity C = 0.01μF are connected in parallel. The capacitors were charged to a voltage of U = 300 V and disconnected from the voltage source. The plates of one of the two capacitors were then pushed apart to a distance twice the original plate distance. What charge flows through the wires?

Solutions

Expert Solution

The charge on both the capacitors remain constant after disconnection. The potential will be same across the capacitor. One of the capacitors will have its capacitance reduced by half when separation of plates is increased by a factor of two as stated in the problem statement.


Related Solutions

Two identical capacitors are connected in parallel, and each acquires a charge Q0 = 1.12E-6 C...
Two identical capacitors are connected in parallel, and each acquires a charge Q0 = 1.12E-6 C when connected to a source of voltage V0 = 2.45 V. The voltage source is disconnected, and a dielectric with constant ? = 2.00 is inserted to fill the space between the plates of one of the capacitors. What is the smaller of the two final capacitor charges? What is the larger of the two final charges? What is the final volatge across the...
Six parallel-plate capacitors of identical plate separation have different plate areas
Six parallel-plate capacitors of identical plate separation have different plate areas A, different capacitances C, and different dielectrics filling the space between the plates. Part A. Rank the following capacitors on the basis of the dielectric constant of the material between the plates. Rank from largest to smallest. 1. \(A=4 \mathrm{~cm}^{2}  \quad \text {C}=2 \mathrm{nF}\) 2. \(A=1 \mathrm{~cm}^{2} \quad \mathrm{C}=1 \mathrm{nF}\) 3. \(A=2 \mathrm{~cm}^{2}  \quad \mathrm{C}=8 \mathrm{nF}\) 4. \(A=8 \mathrm{~cm}^{2}  \quad \mathrm{C}=2 \mathrm{nF}\) 5. \(A=4 \mathrm{~cm}^{2}  \quad \mathrm{C}=1 \mathrm{nF}\) 6....
Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V...
Two identical parallel-plate capacitors, each with capacitance 20.0 μF, are charged to potential difference 40.0 V and then disconnected from the battery. They are then connected to each other in parallel with plates of like sign connected. Finally, the plate separation in one of the capacitors is doubled. (a) Find the total energy of the system of two capacitors before the plate separation is doubled. (b) Find the potential difference across each capacitor after the plate separation is doubled. (c)...
Two identical capacitors each consists of two circular parallel plates with a radius of 1.6 cm...
Two identical capacitors each consists of two circular parallel plates with a radius of 1.6 cm and a separation distance of 3.0 mm. They are filled with a dielectric which has a dielectric constant (strength) of LaTeX: \kappaκκ = 32. These two capacitors are connected in parallel, and connected to a 1.5V battery a) what is their total capacitance? b) If the dielectric is removed what is the total capacitance? c) What energy is stored on the capacitors when they...
If the capacitor in an RC circuit is replaced by two identical capacitors connected in series,...
If the capacitor in an RC circuit is replaced by two identical capacitors connected in series, then find the CORRECT statement. Select one: a. The time constant will be tripled b. The time constant will decrease by a factor of 2 c.  The time constant will be unchanged d. The time constant will decrease by a factor of 4 e. The time constant will be doubled
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a 12V battery and charged. The capacitor is then disconnected from the battery and a dielectric with a dielectric constant of k (3.2) is inserted between the plates. How much energy will be stored in the capacitor after inserting the dielectric (6 points)? please explain step by step
Two capacitors C1 = 2 µF and C2 = 6 µF are connected in parallel across...
Two capacitors C1 = 2 µF and C2 = 6 µF are connected in parallel across a 11 V battery. They are carefully disconnected so that they are not discharged and are reconnected to each other with positive plate to negative plate and negative plate to positive plate (with no battery). (a) Find the potential difference across each capacitor after they are connected. V (2 µF capacitor) . V (6 µF capacitor) (b) Find the initial and final energy stored...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. With the capacitor connected to the battery, decreasing d increases U. A: True B: False After being disconnected from the battery, inserting a dielectric with...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. True or False With the capacitor connected to the battery, increasing d decreases Q. True or False  After being disconnected from the battery, inserting a dielectric...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. With the capacitor connected to the battery, inserting a dielectric with κ will increase C. 2. With the capacitor connected to the battery, decreasing...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT