Question

In: Physics

A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...

A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V .

What is the charge on each plate?

How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery?

How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their separation?

Solutions

Expert Solution

Part A.

Charge on capacitor plate is given by:

Q = C*V

C = 10.3*10^-6 F & V = 11.2 V, So

Q = 10.3*10^-6*11.2

Q = 115.36*10^-6 C = 115.36 C = Charge on each plate

Part B.

Since battery is still connected, So Voltage across capacitor will remain constant, Now

Q = C*V

When plate separation is doubled, then Capacitance will be halved, (Since C = e0*A/d), So

New Capacitance = C1 = C/2 = (1/2)*10.3*10^-6 F

Now new charge will be, since V is constant, So

Q1 = C1*V = (1/2)*C*V = (1/2)*Q

Q1 = (1/2)*115.36*10^-6 C

Q1 = 57.68*10^-6 C = 57.68 C

Part C.

When radius of each plate is doubled, then C1 = e0*A1/d = e0*(pi*r1^2)/d

Since r1 = 2*r, So

C1 = e0*(pi*(2*r)^2)/d = 4*(e0*pi*r^2/d) = 4*C

Now Since voltage is constant, So

Q1 = C1*V

Q1 = 4*C*V = 4*115.36*10^-6

Q1 = 461.44*10^-6 C = 461.44 C = Charge on each plate


Related Solutions

An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now doubled and a dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 16.2 μF. a. Calculate the dielectric constant of the inserted material. b. If the original capacitor was charged to a potential difference of 6.0 V and the battery was disconnected when the modifications to the capacitor was made, by what factor did the energy stored...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a...
A parallel plate air capacitor with a capacitance of C (0.02 F) is connected to a 12V battery and charged. The capacitor is then disconnected from the battery and a dielectric with a dielectric constant of k (3.2) is inserted between the plates. How much energy will be stored in the capacitor after inserting the dielectric (6 points)? please explain step by step
The plates of an isolated parallel plate capacitor with a capacitance C carry a charge Q....
The plates of an isolated parallel plate capacitor with a capacitance C carry a charge Q. The plate separation is d. Initially, the space between the plates contains only air. Then, an isolated metal sheet of thickness 0.5d is inserted between, but not touching, the plates. How does the potential difference between the plates change as a result of inserting the metal sheet? 2. A research Van de Graaff generator has a 2.00-m-diameter metal sphere with a charge of 5.00...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant voltage source. How would the capacitance and the charge change if a dielectric of dielectric constant K=2 is inserted between the plates. C0 and Q0 are the capacitance and charge of the capacitor before the introduction of the dielectric.
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being...
A parallel-plate capacitor with circular plates of radius a separated by a distance d is being charged though a resistor R and battery with emf E. 1 (a) (5pts.) Make a diagram showing the direction of the induced magnetic field between the plates. (b) (15pts) Show that the magnitude of this induced magnetic field r < a is given by B(r) = µ0 r 2π a2 E R e −t/RC, where r is the distance to the axis of symmetry...
1) A parallel plate capacitor is connected to a battery. The electric field between the plates...
1) A parallel plate capacitor is connected to a battery. The electric field between the plates is E. While still connected to the battery, we move the plates so that their plate separation is now twice as large. What is the electric field between the plates now? E/4. E. E/2. 4E. 2E. 2) A parallel plate capacitor with capacitance Co is fully charged. The plates are in the shape of a disk. If the diameter of the disk is doubled...
A parallel-plate capacitor with plates of area 590 cm2 and is connected across the terminals of...
A parallel-plate capacitor with plates of area 590 cm2 and is connected across the terminals of a battery. After some time has passed, the capacitor is disconnected from the battery. When the plates are then moved 0.48 cm farther apart, the charge on each plate remains constant but the potential difference between the plates increases by 100 V. (a) What is the magnitude of the charge on each plate? (b) Do you expect the energy stored in the capacitor to...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is filled with air. The plates are circular, with radius 2.50 cm. The capacitor is connected to a battery and a charge of magnitude 28.0 pC goes into each plate. With the capacitor still connected to the battery, a slab of dielectric is inserted between the plates, completely filling the space between the plates. After the dielectric has been inserted, the charge on each plate...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 18 mm and a plate separation of 3.6 mm. suppose also that a sinusoidal potential difference with a maximum value of 153 V and a frequency of 60 Hz is applied across the plates: that is, V = (153 V) sin[2 ?(60 Hz)t] Find Bmax, the maximum value of the induced magnetic that occurs at r = R.
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a...
Suppose that a parallel-plate capacitor has circular plates with radius R = 60.0 mm and a plate separation of 4.6 mm. Suppose also that a sinusoidal potential difference with a maximum value of 360 V and a frequency of 120 Hz is applied across the plates; that is V=(360.0 V)sin((2.*π)*(120 Hz * t)). Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. Find B(r = 30.0 mm). Find B(r = 120.0 mm). Find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT