Question

In: Advanced Math

Let B ={A1, A2, ..., An}⊆Mmn, and write B′ ={A^T 1, A^T 2, ..., A^T n}⊆Mnm....

Let B ={A1, A2, ..., An}⊆Mmn, and write B′ ={A^T 1, A^T 2, ..., A^T n}⊆Mnm. Show that:

a. B is independent if and only if B′ is independent.

b. B spans Mmn if and only if B′ spans Mnm.

Solutions

Expert Solution


Related Solutions

Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1...
Prove: If a1 = b1 mod n and a2 = b2 mod n then (1) a1 + a2 = b1 + b2 mod n, (2) a1 − a2 = b1 − b2 mod n, and (3) a1a2 = b1b2 mod n.
Let A = {a1, a2, a3, . . . , an} be a nonempty set of...
Let A = {a1, a2, a3, . . . , an} be a nonempty set of n distinct natural numbers. Prove that there exists a nonempty subset of A for which the sum of its elements is divisible by n.
Let a1 ≥ a2, . . . , an be a sequence of positive integers whose...
Let a1 ≥ a2, . . . , an be a sequence of positive integers whose sum is 2n − 2. Prove that there exists a tree T on n vertices whose vertices have degrees a1, a2, . . . , an. Sketch of solution: Prove that there exist i and j such that ai = 1 and aj ≥ 2. Remove ai, subtract 1 from aj and induct on n.
1. Let A1, A2,..., An be mutually disjoint events. Show that a) IP(A1UA2U...UAn) = IP(A1) +...
1. Let A1, A2,..., An be mutually disjoint events. Show that a) IP(A1UA2U...UAn) = IP(A1) + IP(A2) + ... + IP(An) b) There exists at least one i with IP(Ai) less than equals to 1/n 2. Define conditional probability IP(E|F). Derive the Law of total probability and use it to derive Bayes's Formula
Let A1, A2 and A3 be events except with respective probabilities 1/6 , 1/5, and 1/4.Let...
Let A1, A2 and A3 be events except with respective probabilities 1/6 , 1/5, and 1/4.Let N be the number of these events that occur. a) Write down a formula for N in terms of indicators. b) Find E(N). In each of the following cases, calculate Var(N): c) A1, A2, A3 are disjoint; d) they are independent; e) A1 is in A2 is in A3.
Consider the following algorithm, which takes as input a sequence of ?n integers ?1,?2,…,??a1,a2,…,an and produces...
Consider the following algorithm, which takes as input a sequence of ?n integers ?1,?2,…,??a1,a2,…,an and produces as output a matrix ?={???}M={mij} where ???mij is the minim term in the sequence of integers ??,??+1,…,??ai,ai+1,…,aj for ?≥?j≥i and ???=0mij=0 otherwise. for i := 1 to n for j := 1+1 to n for k:= i+1 to j m[i][j] := min(m[i][j], a[k]) end for end for end for return m a.) Show that this algorithm uses ?(?3)O(n3) comparisons to compute the matrix M....
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following...
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following codes running: ori $a0, $0, 11 ori $a1, $0, 19 addi $a1, $a1, -7 slt $t2, $a1, $a0 beq $t2, $0, label addi $a2, $a1, 0 sub $a3, $a1,$a0 j end_1 label: ori $a2, $a0, 0 add $a3, $a1, $a0 end_1: xor $t2, $a1, $a0 *Values in $a0, $a1, $a2, $a3 after the above instructions are executed.
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum...
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum of all integers = 2(n-1) Write an algorithm that, starting with a sequence (a1,a2,a3,...an) of positive integers, either constructs a tree with this degree sequence or concludes that none is possible.
Present an O(n) algorithm that sorts n positive integer numbers a1, a2, . . . ,...
Present an O(n) algorithm that sorts n positive integer numbers a1, a2, . . . , an which are known to be bounded by n 2 (so ai ≤ n 2 , for every i = 1, . . . , n. Use the idea of Radix Sort (discussed in class and presented in Section 8.3 in the textbook). Illustrate your algorithm by showing on paper similar to Fig. 8.3, page 198 in the textbook (make sure you indicate clearly...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT