In: Statistics and Probability
Let A1, A2 and A3 be events except with respective probabilities
1/6 , 1/5, and 1/4.Let N be the number of these events that
occur.
a) Write down a formula for N in terms of indicators.
b) Find E(N).
In each of the following cases, calculate Var(N):
c) A1, A2, A3 are disjoint;
d) they are independent;
e) A1 is in A2 is in A3.
Answer a)
Answer b)
Since Ii are indicators R.V.s, we have that E(I1) = 1/6 , E(I2) = 1/5 , and E(I3) = 1/4
By linearity of expected value:
E(N) = E(I1 + I2 + I3) = E(I1) + E(I2) + E(I3) = 1/6 + 1/5 + 1/4 = (10 + 12 + 15)/60 = 37/60
Answer c)
Var(N) = Var(I1 + I2 + I3) (By Def. of N)
Var(N) = E[(I1 + I2 + I3)2] ? [E(I1 + I2 + I3)]2 (Computational formula for Var)
The second term of this expression is [E(I1 + I2 + I3)]2 = E(N)2 = (37/60)2 = 1369/3600
E[(I1 + I2 + I3)2] = E[I12 + I22 + I32 + 2I1I2 + 2I1I3 + 2I2I3] (Squaring inside)
E = E(I12) + E(I22) + E(I32) + 2E(I1I2) + 2E(I1I3) + 2E(I2I3) (Linearity of E)
E = E(I1) + E(I2) + E(I3) + 2E(I1I2) + 2E(I1I3) + 2E(I2I3) (Idempotence of Ii)
But, IiIj = Ii?j , so P(Ii?j = 1) = 0 since events are mutually disjoint. So, E(IiIj ) = 0
E[(I1 + I2 + I3)2] = E(I1) + E(I2) + E(I3) = E(N) = 37/60 Combining these two expressions:
Var(N) = E(N) ? E(N)2 = 37/60 - 1369/3600 = 851/3600
Answer d)
Note that Var(I1) = pq = (1/6)*(5/6) = 5/36. Likewise, Var(I2) = 4/25 , and Var(I3) = 3/16.
By independence, Var(N) = Var(I1 + I2 + I3) = Var(I1) +Var(I2) +Var(I3) = 5/36 + 4/25 + 3/16 = (500+576+675)/3600
Var(N) = 1751/3600
Answer e)
We proceed as we did for part c).
Var(N) = Var(I1 + I2 + I3) (By Def. of N)
Var(N) = E[(I1 + I2 + I3)2] ? [E(I1 + I2 + I3)]2 (Computational formula for Var)
The second term was previously computed in c).
For the first term:
E[(I1 + I2 + I3)2] = E(I1) + E(I2) + E(I3) + 2E(I1I2) + 2E(I1I3) + 2E(I2I3) (Previous calculation)
But, I1I2 = I1 since A1 ? A2. Likewise, I1I3 = I1 since A1 ? A3 and I2I3 = I2 since A2 ? A3. Hence
E[(I1 + I2 + I3)2] = E(I1) + E(I2) + E(I3) + 2E(I1I2) + 2E(I1I3) + 2E(I2I3)
E[(I1 + I2 + I3)2] = 5E(I1) + 3E(I2) + E(I3)
E[(I1 + I2 + I3)2] = 5*1/6 + 3*1/5 + 1/4
E[(I1 + I2 + I3)2] = (50+36+15)/60 = 101/60
Finally,
Var(N) = E[(I1 + I2 + I3)2] ? E(N)2 = 101/60-1369/3600 = (6060-1369)/3600
Var(N) = 4691/3600