Question

In: Advanced Math

Let A = {a1, a2, a3, . . . , an} be a nonempty set of...

Let A = {a1, a2, a3, . . . , an} be a nonempty set of n distinct natural numbers. Prove that there exists a nonempty subset of A for which the sum of its elements is divisible by n.

Solutions

Expert Solution

Since the set A has n distinct numbers (integers), so they form a congruence class modulo n.

i.e if we consider the set, A(mod n) defined as,

A(mod n) := { a1(mod n), a2(mod n), a3(mod n), ..., an(mod n) }

Since, A has n distinct elements so, A(mod n) is nothing but Zn, which is the set of all congruence classes modulo n.

i.e. A(mod n) = Zn = {0,1,2,3,...,n-1}

Now, let, S is a subset of A(mod n) such that, S = {1, 2, n-2, n-1}

Then, the sum of the 4 elements of S is, n+n = 2n = 0 (mod n)

Hence, if we get back to the set, B which is a 4-element subset of A such that, S = B(mod n)

Then, Suppose, B = { ar, as, ai, aj } such that, r, s, i & j range between 1 to n and B(mod n) = S. Since, the sum of the elements of B(mod n) is 0 mod n, so, the sum of the elements of.B are divisible by n.

So, B is the desired subset of A whose sum of elements is divisible by n.

This is how we constructed B from A.


Related Solutions

covert the schema into 3NF. TableC (a1,a2,a3,a4,a5) functionally dependencies: a1 --> {a2,a3,a5} a4 --> {a1,a2,a3,a5} a3...
covert the schema into 3NF. TableC (a1,a2,a3,a4,a5) functionally dependencies: a1 --> {a2,a3,a5} a4 --> {a1,a2,a3,a5} a3 -->{a5} Answer: Relation1: Relation2:
Alternating Series Test. Let (an) be a sequence satisfying (i) a1 ≥ a2 ≥ a3 ≥...
Alternating Series Test. Let (an) be a sequence satisfying (i) a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ an+1 ≥ · · · and (ii) (an) → 0. Show that then the alternating series X∞ n=1 (−1)n+1an converges using the following two different approaches. (a) Show that the sequence (sn) of partial sums, sn = a1 − a2 + a3 − · · · ± an is a Cauchy sequence Alternating Series Test. Let (an) be...
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum...
Question in graph theory: 1. Let (a1,a2,a3,...an) be a sequence of integers. Given that the sum of all integers = 2(n-1) Write an algorithm that, starting with a sequence (a1,a2,a3,...an) of positive integers, either constructs a tree with this degree sequence or concludes that none is possible.
Let A1, A2 and A3 be events except with respective probabilities 1/6 , 1/5, and 1/4.Let...
Let A1, A2 and A3 be events except with respective probabilities 1/6 , 1/5, and 1/4.Let N be the number of these events that occur. a) Write down a formula for N in terms of indicators. b) Find E(N). In each of the following cases, calculate Var(N): c) A1, A2, A3 are disjoint; d) they are independent; e) A1 is in A2 is in A3.
For each of the following sequences find a functionansuch that the sequence is a1, a2, a3,...
For each of the following sequences find a functionansuch that the sequence is a1, a2, a3, . . .. You're looking for a closed form - in particular, your answer may NOT be a recurrence (it may not involveany otherai). Also, while in general it is acceptable to use a "by cases"/piecewise definition, for this task you must instead present a SINGLE function that works for all cases.(Hint: you may find it helpful to first look at the sequence of...
A company uses three different assembly lines – A1, A2, and A3 – to manufacture a...
A company uses three different assembly lines – A1, A2, and A3 – to manufacture a particular component. Of those manufactured by line A1, 5% need rework to remedy a defect, whereas 8% of A2’s components need rework and 10% of A3’s need rework. Suppose that 50% of all components are produced by line A1, 30% are produced by line A2, and 20% come from line A3. (a) Suppose a component is selected at random, what is the probability that...
Let A0.A1,A2,A3,A4 devide a unit circle (circle of radius one) into five equal parts. Prove that...
Let A0.A1,A2,A3,A4 devide a unit circle (circle of radius one) into five equal parts. Prove that the chords A0 A1, A0 A2 satisfy: (A0 A1 * A0 A2)^2 = 5.
Consider the following eight examples: A1 = (4,20), A2 = (4,10), A3 = (16,8), A4 =...
Consider the following eight examples: A1 = (4,20), A2 = (4,10), A3 = (16,8), A4 = (10,16), A5 = (14,10), A6 = (12,8), A7 = (2,4), A8 = (8,18) The distance function is Euclidian distance. Use single-link, complete-link agglomerative clustering, and centroid techniques to cluster these examples. Show your calculations and draw the dendrograms for each technique.
Find an arithmetic code for a symbol p4p4p3 for the source alphabet {a1, a2, a3, a4,...
Find an arithmetic code for a symbol p4p4p3 for the source alphabet {a1, a2, a3, a4, a5}, with symbol probabilities p1 = 0.11, p2 = 0.05, p3 = 0.10, p4 = 0.70, and p5 = 0.04. Show the work please.
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following...
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following codes running: ori $a0, $0, 11 ori $a1, $0, 19 addi $a1, $a1, -7 slt $t2, $a1, $a0 beq $t2, $0, label addi $a2, $a1, 0 sub $a3, $a1,$a0 j end_1 label: ori $a2, $a0, 0 add $a3, $a1, $a0 end_1: xor $t2, $a1, $a0 *Values in $a0, $a1, $a2, $a3 after the above instructions are executed.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT