Question

In: Statistics and Probability

The probability that "X is at most 3" is interpreted as:

The probability that "X is at most 3" is interpreted as:

Solutions

Expert Solution

P(X is at most 3) = P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

                       

                             

                                                 

                                             

                                         

                              

                                  


Related Solutions

If X follows the following probability distribution: .20 2 <X <3 f (x) = .60 3...
If X follows the following probability distribution: .20 2 <X <3 f (x) = .60 3 <X <4   .20 4 <X <5 0 for other X’s a. Calculate the cumulative probability function of X and make a reasonable graphical representation. (15 pts) b. Calculate the expected value of X and the Variance of X. (15 pts) c. Calculate the probability that X is between 2.40 and 3.80. (10 pts) d. Calculate the percentile of 70 percent. (10 pts) e. If...
Find the probability that x is between five and 11. X ~ N(6, 3)
Find the probability that x is between five and 11. X ~ N(6, 3)
Let be the following probability density function f (x) = (1/3)[ e ^ {- x /...
Let be the following probability density function f (x) = (1/3)[ e ^ {- x / 3}] for 0 <x <1 and f (x) = 0 in any other case a) Determine the cumulative probability distribution F (X) b) Determine the probability for P (0 <X <0.5)
a.  For the following probability density function:                 f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2           &nbsp
a.  For the following probability density function:                 f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2                        = 0 otherwise            find its expectation and variance. b. The two regression lines are 2X - 3Y + 6 = 0 and 4Y – 5X- 8 =0 , compute mean of X and mean of Y. Find correlation coefficient r , estimate y for x =3 and x for y = 3.
Suppose X has probability distribution x: 0 1 2 3 4 P(X = x) 0.2 0.1...
Suppose X has probability distribution x: 0 1 2 3 4 P(X = x) 0.2 0.1 0.2 0.2 0.3 Find the following probabilities: a. P(X < 2) b. P(X ≤ 2 and X < 4) c. P(X ≤ 2 and X ≥ 1) d. P(X = 1 or X ≤ 3) e. P(X = 2 given X ≤ 2)
x 0 1 2 3 4 P(X) .45 .3 .2 .04 .01 (c) Find the probability...
x 0 1 2 3 4 P(X) .45 .3 .2 .04 .01 (c) Find the probability that a person has 1 sibling given that they have less than 3 siblings. Hint: Use the conditional formula: P(A|B)=P(A and B)/P(B). In this case A: event of having 1 sibling and B: event of having less than 3 siblings. (d) Find the probability that a person has at least 1 sibling OR less than 2 siblings. Hint: Use the General Addition Rule: P(A...
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional...
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional space. Express the operator T(p) = p' as a matrix (i) in basis {1, x, x 2 }, (ii) in basis {1, x, 1+x 2 } .
Let f(x) = b(x+1), x = 0, 1, 2, 3 be the probability mass function (pmf)...
Let f(x) = b(x+1), x = 0, 1, 2, 3 be the probability mass function (pmf) of a random variable X, where b is constant. A. Find the value of b B. Find the mean μ C. Find the variance σ^2
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0...
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0 1 2 y 0 0.12 0.08 0.06 1 0.04 0.19 0.12 2 0.04 0.05 0.3 Find the followings: E(Y)= Var(X)= Cov(X,Y)= Correlation(X,Y)=
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ {...
The (mixed) random variable X has probability density function (pdf) fX (x) given by: fx(x)=0.5δ(x−3)+ { c.(4-x2), 0≤x≤2 0, otherwise where c is a constant. (a) Sketch fX (x) and find the constant c. (b) Find P (X > 1). (c) Suppose that somebody tells you {X > 1} occurred. Find the conditional pdf fX|{X>1}(x), the pdf of X given that {X > 1}. (d) Find FX(x), the cumulative distribution function of X. (e) Let Y = X2 . Find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT