Question

In: Statistics and Probability

a.  For the following probability density function:                 f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2           &nbsp

a.  For the following probability density function:

                f(X)= 3/4 (2X-X^2 ) 0 ≤ X ≤ 2

                       = 0 otherwise

           find its expectation and variance.

b. The two regression lines are 2X - 3Y + 6 = 0 and 4Y – 5X- 8 =0 , compute mean of X and mean of Y. Find correlation coefficient r , estimate y for x =3 and x for y = 3.

Solutions

Expert Solution


Related Solutions

F(x) = 0 + 2x + (4* x^2)/2! + (3*x^3)/3! + ..... This is a taylors...
F(x) = 0 + 2x + (4* x^2)/2! + (3*x^3)/3! + ..... This is a taylors series for a function and I'm assuming there is an inverse function with an inverse taylors series, I am trying to find as much of the taylors series of the inverse function (f^-1) as I can
Let be the following probability density function f (x) = (1/3)[ e ^ {- x /...
Let be the following probability density function f (x) = (1/3)[ e ^ {- x / 3}] for 0 <x <1 and f (x) = 0 in any other case a) Determine the cumulative probability distribution F (X) b) Determine the probability for P (0 <X <0.5)
A probability density function on R is a function f :R -> R satisfying (i) f(x)≥0...
A probability density function on R is a function f :R -> R satisfying (i) f(x)≥0 or all x e R and (ii) \int_(-\infty )^(\infty ) f(x)dx = 1. For which value(s) of k e R is the function f(x)= e^(-x^(2))\root(3)(k^(5)) a probability density function? Explain.
Using Matlab, consider the function f(x) = x^3 – 2x + 4 on the interval [-2,...
Using Matlab, consider the function f(x) = x^3 – 2x + 4 on the interval [-2, 2] with h = 0.25. Write the MATLAB function file to find the first derivatives in the entire interval by all three methods i.e., forward, backward, and centered finite difference approximations. Could you please add the copiable Matlab code and the associated screenshots? Thank you!
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)=...
Find f(x) for the following function. Then find f(6), f(0), and f(-7). f(x)=-2x^2+1x f(x)= f(6)= f(0)= f(-7)=
Solve for x x^4 + 2x^3 + 2x^2 + 3x + 1 = 0
Solve for x x^4 + 2x^3 + 2x^2 + 3x + 1 = 0
1. The random variable X has probability density function: f(x) = ( ke−x 0 ≤ x...
1. The random variable X has probability density function: f(x) = ( ke−x 0 ≤ x ≤ ln 5 4 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln (5/4) 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT