In: Statistics and Probability
Question 3
Suppose that X and Y have the following joint probability distribution:
f(x,y) |
x |
|||
0 |
1 |
2 |
||
y |
0 |
0.12 |
0.08 |
0.06 |
1 |
0.04 |
0.19 |
0.12 |
|
2 |
0.04 |
0.05 |
0.3 |
Find the followings:
The joint pmf of X and Y is given by,
y | x | 0 | 1 | 2 | P(Y=y) |
0 | 0.12 | 0.08 | 0.06 | 0.26 | |
1 | 0.04 | 0.19 | 0.12 | 0.35 | |
2 | 0.04 | 0.05 | 0.3 | 0.39 | |
P(X=x) |
0.2 |
0.32 | 0.48 | 1 |
The marginal pmf of X is,
P(X=x) = 0.2 , if x=0
= 0.32, if x=1
= 0.48 , if x=2
The marginal pmf of Y is,
P(Y=y) = 0.26, if y=0
= 0.35, if y=1
= 0.39, if y=2
a) E(Y) = y P(Y=y)
= 0× P(Y=0) + 1× P(Y=1) + 2× P( Y=2)
= 0.35 + 0.78 = 1.13 (Ans)
E(Y2) = y2 P( Y=y)
= 0× P( Y=0) + 1× P(Y=1) + 22 P(Y=2)
= 0.35 + 1.56 = 1.91
Therefore , V(Y) = E(Y2 ) - E2 (Y)
= 1.91 - 1.132 = 1.91 - 1.2769 = 0.6331
b) E(X) = x P( X=x)
= 0× P( X=0) + 1× P(X=1) + 2× P( X=2)
= 0.32 + 0.96 = 1.28
E(X2 ) = x2 P(X=x)
= 0 + 1× 0.32 + 22 × 0.48 = 0.32+1.92 = 2.24
Therefore, V(X) = 2.24 - 1.282 = 2.24 - 1.6384
= 0.6016 (Ans)
c) The covariance of X and Y is given by,
Cov(X,Y) = E(XY) - E(X)E(Y)
E(XY) = xy P(X=x, Y= y)
= 0+ 0+ 0+ 0+ 1×1×0.19 + 1×2×0.05 +0+ 2×1×0.12 + 2×2×0.3
= 0.19 + 0.1+ 0.24 + 1.2 = 1.73
Therefore, cov(X,Y) = 1.73 - 1.4464 = 0.2836 (Ans)
d) The correlation of X and Y is given by,
= cov(X,Y) /
= 0.2836/
= 0.2836/ (0.7756× 0.7957)
= 0.2836/ 0.6171 = 0.459 (Ans)