Question

In: Math

Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional...

Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional space. Express the operator T(p) = p'

as a matrix (i) in basis {1, x, x 2 }, (ii) in basis {1, x, 1+x 2 } .

Solutions

Expert Solution


Related Solutions

3. We let ??(?) denote the set of all polynomials of degree at most n with...
3. We let ??(?) denote the set of all polynomials of degree at most n with real coefficients. Let ? = {? + ??3 |?, ? ??? ???? ???????}. Prove that T is a vector space using standard addition and scalar multiplication of polynomials in ?3(?).
Let V be the space of polynomials with real coefficients of degree at most n, and...
Let V be the space of polynomials with real coefficients of degree at most n, and let D be the differentiation operator. Find all eigenvectors of D on V.
how many irreducible polynomials of degree 2 in Z3 [x]
how many irreducible polynomials of degree 2 in Z3 [x]
Do the polynomials x^3 + x + 2, x^2 - x +2, -x^3 + x^2 -...
Do the polynomials x^3 + x + 2, x^2 - x +2, -x^3 + x^2 - 5x + 3, and x^3 + 2 span P3? (show your conclusion.)
Let V be the 3-dimensional vector space of all polynomials of order less than or equal...
Let V be the 3-dimensional vector space of all polynomials of order less than or equal to 2 with real coefficients. (a) Show that the function B: V ×V →R given by B(f,g) = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product and write out its Gram matrix with respect to the basis (1,t,t2). DO NOT COPY YOUR SOLUTION FROM OTHER SOLUTIONS
Let F be a field. (a) Prove that the polynomials a(x, y) = x^2 − y^2,...
Let F be a field. (a) Prove that the polynomials a(x, y) = x^2 − y^2, b(x, y) = 2xy and c(x, y) = x^2 + y^2 in F[x, y] form a Pythagorean triple. That is, a^2 + b^2 = c^2. Use this fact to explain how to generate right triangles with integer side lengths. (b) Prove that the polynomials a(x,y) = x^2 − y^2, b(x,y) = 2xy − y^2 and c(x,y) = x^2 − xy + y2 in F[x,y]...
Let P2 be the vector space of all polynomials of degree less than or equal to...
Let P2 be the vector space of all polynomials of degree less than or equal to 2. (i) Show that {x + 1, x2 + x, x − 1} is a basis for P2. (ii) Define a transformation L from P2 into P2 by: L(f) = (xf)'    . In other words, L acts on the polynomial f(x) by first multiplying the function by x, then differentiating. The result is another polynomial in P2. Prove that L is a linear transformation....
Let PN denote the vector space of all polynomials of degree N or less, with real...
Let PN denote the vector space of all polynomials of degree N or less, with real coefficients. Let the linear transformation: T: P3 --> P1 be the second derivative. Is T onto? Explain. Is T one-to-one? What is the Kernel of T? Find the standard matrix A for the linear transformation T. Let B= {x+1 , x-1 , x2+x , x3+x2 } be a basis for P3 ; and F={ x+2 , x-3 } be a basis for P1 ....
Let K be a field. Observe that the polynomials in K[x] that are not zero and...
Let K be a field. Observe that the polynomials in K[x] that are not zero and not units are precisely the polynomials of positive degree.
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's...
S_3 is the vector space of polynomials degree <= 3. V is a subspace of poly's s(t) so that s(0) = s(1) = 0. The inner product for two poly. s(t) and f(t) is def.: (s,f) = ([integral from 0 to 1] s(t)f(t)dt). I would like guidance finding (1) an orthogonal basis for V and (2) the projection for s(t) = 1 - t + 2t^2. Thank you!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT