Question

In: Math

Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 , y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13

Question : y''=4y'+8y=0 , (y''-4y'+13y)^2=0 , (y''+2y'+2y)^2=0 ,

y''-6y'+13y=0,y(0)=3 , y'(0)=13 , 2y''-6y'+17y=0,y(0)=2, y'(0)=13

Solutions

Expert Solution


Related Solutions

Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
Question : y'''+4y' =0 , y'''-2y''+4y'-8y=0 , y'''-3y''+3y'-y=0 , y^4 -4y'''+6y''-4y+y=0 , y^4+6y''+9y=0 , y^6+y'''=0
solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10
solve for the second order initial value problem= y"-6y+8y=0 y(0)=3, y'(0)=10
find the general solution 2xy^3+e^x+(3x^2y^2+siny)y'=0 xy'=6y+12x^4y^(2/3) (2x+1)y'+y=(2x+1)^(3/2)
find the general solution 2xy^3+e^x+(3x^2y^2+siny)y'=0 xy'=6y+12x^4y^(2/3) (2x+1)y'+y=(2x+1)^(3/2)
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ −...
Find the general solution of the following equations: y′′ −4y′ +4y=0; y′′ −5y′ +6y=0; y′′ − 2y′ = 0
Maximize z=x+4y Subject to 2x+6y<= 36 4x+2y<= 32 x>= 0 y>= 0 Maximum is ___________ at...
Maximize z=x+4y Subject to 2x+6y<= 36 4x+2y<= 32 x>= 0 y>= 0 Maximum is ___________ at x = ______ y = ______
1) Solve each of the following differential equations. a)16y"-8y'+y=0 b) (d^4y)/(dx^4)-13((d^2y)/(dx^2))+36y=0 2) use Variation of Parameters...
1) Solve each of the following differential equations. a)16y"-8y'+y=0 b) (d^4y)/(dx^4)-13((d^2y)/(dx^2))+36y=0 2) use Variation of Parameters to solve y"+16y=(1/3)csc4t 3) use undetermined coefficients to solve y"-5y'+4y=3e^(3t)-5e^(2t) with y'(0)=-1 and y(0)=1 4) Explain why the product (A+B)(A-B) not equal A^2-B^2 fro two NXN matrices A and B. what is the product of (A+B)(A-B)?
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
solve this equation y''-6y'+8y=1 when y(0)=1, y'(0)=7
la place transform of 1. y´´+4y´+3y=0. y(0)=3, y´(0)=1 2. y´´+2y´+y=0. y(0)=1, y´(0)=1
la place transform of 1. y´´+4y´+3y=0. y(0)=3, y´(0)=1 2. y´´+2y´+y=0. y(0)=1, y´(0)=1
1) x2y'' - 8xy' - 8y =0 2) y''- 3y' - 2y = 10sin(x)
1) x2y'' - 8xy' - 8y =0 2) y''- 3y' - 2y = 10sin(x)
($4.7 Cauchy-Euler Equations): Solve the following Euler-type equations (a)–(c). (a) x^2y''-4xy'-6y=0 (b) x^2y''+7xy'+13y=0 (c) x^2y''+3xy'+y=x
($4.7 Cauchy-Euler Equations): Solve the following Euler-type equations (a)–(c). (a) x^2y''-4xy'-6y=0 (b) x^2y''+7xy'+13y=0 (c) x^2y''+3xy'+y=x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT