Suppose x,y ∈ R and assume that x < y. Show that for all z
∈ (x,y), there exists α ∈ (0,1) so that αx+(1−α)y = z. Now, also
prove that a set X ⊆ R is convex if and only if the set X satisfies
the property that for all x,y ∈ X, with x < y, for all z ∈
(x,y), z ∈ X.