Question

In: Advanced Math

Suppose x,y ∈ R and assume that x < y. Show that for all z ∈...

Suppose x,y ∈ R and assume that x < y. Show that for all z ∈ (x,y), there exists α ∈ (0,1) so that αx+(1−α)y = z. Now, also prove that a set X ⊆ R is convex if and only if the set X satisfies the property that for all x,y ∈ X, with x < y, for all z ∈ (x,y), z ∈ X.

Solutions

Expert Solution


Related Solutions

Show that every Pythagorean triple (x, y, z) with x, y, z having no common factor...
Show that every Pythagorean triple (x, y, z) with x, y, z having no common factor d > 1 is of the form (r^2 - s^2, 2rs, r^2 + s^2) for positive integers r > s having no common factor > 1; that is x = r^2 - s^2, y = 2rs, z = r^2 + s^2.
Suppose X,Y,Z ⊆ U. If X is the set of all people who played hockey in...
Suppose X,Y,Z ⊆ U. If X is the set of all people who played hockey in high school, Y is the set of all out-of-state students, and Z is the set of all international students, describe the following sets in words: (a) X′ ∪Y ∪Z   (b) X ∩ Y ′ ∩ Z′   (c) (X∩Y′)∪Z′ Consider the set A = {b, c, d}. (a) How many subsets does A have? (b) List all subsets of A. Suppose that a committee of...
R is included in (R-{0} )x(R-{0} ) R = {(x,y) : xy >0} Show that R...
R is included in (R-{0} )x(R-{0} ) R = {(x,y) : xy >0} Show that R is an equivalent relation and find f its equivalent classes
Show that if (x,y,z) is a primitive Pythagorean triple, then X and Y cannot both be...
Show that if (x,y,z) is a primitive Pythagorean triple, then X and Y cannot both be even and cannot both be odd. Hint: for the odd case, assume that there exists a primitive Pythagorean triple with X and Y both odd. Then use the proposition "A perfect square always leaves a remainder r=0 or r=1 when divided by 4." to produce a contradiction.
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
Find the positive numbers x, y and z whose sum is 100 such that x^r y^s...
Find the positive numbers x, y and z whose sum is 100 such that x^r y^s z^t is a maximum, where r, s and t are constants.
6. Let R be a relation on Z x Z such that for all ordered pairs...
6. Let R be a relation on Z x Z such that for all ordered pairs (a, b),(c, d) ∈ Z x Z, (a, b) R (c, d) ⇔ a ≤ c and b|d . Prove that R is a partial order relation.
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z)...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z) b. X×(Y×Z) = (X.Z)Y – (X.Y)Z c. X.(Y×Z) = -Y.(X×Z)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT