Question

In: Statistics and Probability

PART A: Suppose X and Y are independent. Show that H(X|Y) = H(X) . (H represents...

PART A: Suppose X and Y are independent. Show that H(X|Y) = H(X) . (H represents entropy i think)

PART B: Suppose X and Y are independent. Show that H(X,Y) = H(X) + H(Y)

PART C: Prove that the mutual information is symmetric, i.e., I(X,Y) = I(Y,X) and xi∈X, yi∈Y

Solutions

Expert Solution

ANSWER::

Here part A,B ,C

(OR) TRY THIS  

PART A:

Suppose X and Y are independent. Show that H(X|Y) = H(X) .

PART B:

Suppose X and Y are independent. Show that H(X,Y) = H(X) + H(Y)

NOTE:: I HOPE THIS ANSWER IS HELPFULL TO YOU......**PLEASE SUPPORT ME WITH YOUR RATING......

**PLEASE GIVE ME "LIKE".....ITS VERY IMPORTANT  FOR,ME......PLEASE SUPPORT ME .......THANK YOU


Related Solutions

Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y...
Let X, Y be independent exponential random variables with mean one. Show that X/(X + Y ) is uniformly distributed on [0, 1]. (Please solve it with clear explanations so that I can learn it. I will give thumbs up.)
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈...
Suppose x,y ∈ R and assume that x < y. Show that for all z ∈ (x,y), there exists α ∈ (0,1) so that αx+(1−α)y = z. Now, also prove that a set X ⊆ R is convex if and only if the set X satisfies the property that for all x,y ∈ X, with x < y, for all z ∈ (x,y), z ∈ X.
Suppose X and Y are independent random variables with X = 2:8 and Y = 3:7....
Suppose X and Y are independent random variables with X = 2:8 and Y = 3:7. Find X+Y , the standard deviation of X + Y .
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A-...
Suppose X and Y are independent variables and X~ Bernoulli(1/2) and Y~ Bernoulli(1/3) and Z=X+Y A- find the joint probability table B- find the probility distribution table of Z C- find E(X+Y) D- find E(XY) E- find Cov(X, Y)
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y 2 70 0 70 4 130 a.) By hand, determine the simple regression equation relating Y and X. b.) Calculate the R-Square measure and interpret the result. c.) Calculate the adjusted R-Square. d.) Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. e.) Test to see whether X and Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y 2          70 0          70 4          130 Test to see whether X and Y are significantly related using a t-test on the slope of X. Test this at the 0.05 level. Test to see whether X and Y are significantly related using an F-test on the slope of X. Test this at the 0.05 level.
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y 2 70 0 70 4 130 a.) By hand, determine the simple regression equation relating Y and X. b.) Calculate the R-Square measure and interpret the result. c.) Calculate the adjusted R-Square. d.) Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. e.) Test to see whether X and Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y 2          70 0          70 4          130 By hand, determine the simple regression equation relating Y and X. Calculate the R-Square measure and interpret the result. Calculate the adjusted R-Square. Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. Test to see whether X and Y are significantly related using a...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y 2 70 0 70 4 130 (SOLVE ALL BY HAND, NOT BY USING EXCEL) By hand, determine the simple regression equation relating Y and X. Calculate the R-Square measure and interpret the result. Calculate the adjusted R-Square. Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. Test to see whether...
Question 1: Show that x = h + r cos t and y = k +...
Question 1: Show that x = h + r cos t and y = k + r sin t represents the equation of a circle. Question 4: Find the area above the polar x-axis and enclosed by r = 2−cos(θ). Question 5: If r = f(θ) is a polar curve, find the slope of the tangent line at a point (r0,θ0).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT