In: Operations Management
A convenience store recently started to carry a new brand of soft drink. Management is interested in estimating future sales volume to determine whether it should continue to carry the new brand or replace it with another brand. The following table provides the number of cans sold per week. Use both the trend projection with regression and the exponential smoothing (let alpha α=0.4) with an initial forecast for week 1 of 569) methods to forecast demand for week 13. Compare these methods by using the mean absolute deviation and mean absolute percent error performance criteria. Does your analysis suggest that sales are trending and if so, by how much?
Period 1 2 3
4 5 6 7
8 9 10 11 12
Sales 569 615 645
742 640 606 732
718 713 690 678
738
Observation 1 2 3
4 5 6 7
8 9 10 11 12
(i) Obtain the trend projection with regression forecast.
The forecast for week 13 is
Week 13 corresponds to t=13. Obtain the forecast for the next week by substituting t=13 into the regression equation.
(ii) Now obtain the exponential smoothing forecast.
The exponential smoothing method is a weighted moving average method that calculates the average of a time series by giving recent demands more weight than earlier demands. The equation for the forecast is:
Ft+1=α(Demand this period)+(1−α)(Forecast calculated last period)=αDt+(1−α)Ft.
(i) Linear Regression:
Let X be the number of Period (Week) and Y be the sales.
The Linear Regression equation shall be : Y = MX + C
Sum of X = 1+ 2 + 3+ 4 + 5+ 6 + 7 + 8 + 9 + 10 + 11 + 12 = 78
Sum of Y = 569 + 615 + 645 + 742 + 640 + 606 + 732 + 718 + 713 + 690 + 678 + 738 = 8086
Mean Value of X = 78 / 12 = 6.5
Mean Value of Y = 8086 / 12 = 673.83
X | Y | X -Mean X | (X - Mean X)^2 | Y - Mean Y | (X - Mean X)(Y - Mean Y) |
1 | 569 | -5.5 | 30.25 | -104.83 | 576.58 |
2 | 615 | -4.5 | 20.25 | -58.83 | 264.75 |
3 | 645 | -3.5 | 12.25 | -28.83 | 100.92 |
4 | 742 | -2.5 | 6.25 | 68.17 | -170.42 |
5 | 640 | -1.5 | 2.25 | -33.83 | 50.75 |
6 | 606 | -0.5 | 0.25 | -67.83 | 33.92 |
7 | 732 | 0.5 | 0.25 | 58.17 | 29.08 |
8 | 718 | 1.5 | 2.25 | 44.17 | 66.25 |
9 | 713 | 2.5 | 6.25 | 39.17 | 97.92 |
10 | 690 | 3.5 | 12.25 | 16.17 | 56.58 |
11 | 678 | 4.5 | 20.25 | 4.17 | 18.75 |
12 | 738 | 5.5 | 30.25 | 64.17 | 352.92 |
Sum of (X - Mean X)^ 2) = 30.25 + 20.25 + 12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 + 12.25 + 20.25 + 30.25 = 143
Sum of ((X - Mean X)(Y - Mean Y)) = 576.58 + 264.75 + 100.92 - 170.42 + 50.75 + 33.92 + 29.08 + 66.25 + 97.92 + 56.58 + 18.75 + 353.92 = 1478
M = Sum of ((X - Mean X)(Y - Mean Y)) / Sum of (X - Mean X)^ 2) = 1478 / 143 = 10.335
C = Mean Y - ( M x Mean X) = 673.83 - ( 10.335 x 6.5 ) = 673.83 - 67.1775 = 606.6525
Therefore, the linear regression equation is as follows:
Y = 10.335 X + 606.6525
So, the forecast for Week 13:
Y = ( 10.335 x 13 ) + 606.6525
= 134.355 + 606.6525
= 741.0075 = 741 (Rounding off)
Exponential smoothing forecast:
α = 0.4
Forecast for Week 1 = 569
Forecast for Week (n +1 ) = α (Sales of Week n) + (1 -α)( Forecast of Week n)
So, the forecast shall be as per below table:
Week | Sales | Forecast |
1 | 569 | 569.000 |
2 | 615 | 569.000 |
3 | 645 | 587.400 |
4 | 742 | 610.440 |
5 | 640 | 663.064 |
6 | 606 | 653.838 |
7 | 732 | 634.703 |
8 | 718 | 673.622 |
9 | 713 | 691.373 |
10 | 690 | 700.024 |
11 | 678 | 696.014 |
12 | 738 | 688.809 |
13 | 708.485 |
Forecast for Week 13 = 708.485 = 708 (Rounding off)
Mean Absolute Deviation(MAD) and Mean Absolute Percent Error(MAPE):
Linear Regression:
Period | Sales | Forecast | Error (Sales - Forecast) | Absolute value of Error | Percent of Absolute Error(Absolute Error / Sales) |
1 | 569 | 616.988 | -47.988 | 47.988 | 0.084 |
2 | 615 | 627.323 | -12.323 | 12.323 | 0.020 |
3 | 645 | 637.658 | 7.342 | 7.342 | 0.011 |
4 | 742 | 647.993 | 94.007 | 94.007 | 0.127 |
5 | 640 | 658.328 | -18.328 | 18.328 | 0.029 |
6 | 606 | 668.663 | -62.663 | 62.663 | 0.103 |
7 | 732 | 678.998 | 53.002 | 53.002 | 0.072 |
8 | 718 | 689.333 | 28.668 | 28.668 | 0.040 |
9 | 713 | 699.668 | 13.333 | 13.333 | 0.019 |
10 | 690 | 710.003 | -20.003 | 20.003 | 0.029 |
11 | 678 | 720.338 | -42.338 | 42.338 | 0.062 |
12 | 738 | 730.673 | 7.327 | 7.327 | 0.010 |
Mean Absolute Deviation = Mean value of Absolute Error = Sum of Absolute Error / Number of weeks
= 407.32 / 12 = 33.94
Mean Absolute Percent Error = Sum of Percent of Absolute Error / Number of Weeks = 0.607 / 12
= 0.051 = 5.1 %
Exponential smoothing:
Week | Sales | Forecast | Error (Sales - Forecast) | Absolute value of Error | Percent of Absolute Error(Absolute Error / Sales) |
1 | 569 | 569.000 | 0.000 | 0.000 | 0.000 |
2 | 615 | 569.000 | 46.000 | 46.000 | 0.075 |
3 | 645 | 587.400 | 57.600 | 57.600 | 0.089 |
4 | 742 | 610.440 | 131.560 | 131.560 | 0.177 |
5 | 640 | 663.064 | -23.064 | 23.064 | 0.036 |
6 | 606 | 653.838 | -47.838 | 47.838 | 0.079 |
7 | 732 | 634.703 | 97.297 | 97.297 | 0.133 |
8 | 718 | 673.622 | 44.378 | 44.378 | 0.062 |
9 | 713 | 691.373 | 21.627 | 21.627 | 0.030 |
10 | 690 | 700.024 | -10.024 | 10.024 | 0.015 |
11 | 678 | 696.014 | -18.014 | 18.014 | 0.027 |
12 | 738 | 688.809 | 49.191 | 49.191 | 0.067 |
Mean Absolute Deviation = Sum of Absolute Error/ Number of weeks = 546.594 / 12
= 45.55
Mean Absolute Percent Error = Sum of Percent Absolute Error / Number of weeks = 0.789 / 12
= 0.065 = 6.5 %
Linear Regression provides a better trend of the forecasts, as the Mean Absolute Deviation and Mean absolute Percent Error is lower in the case of the Linear Regression method.