In: Statistics and Probability
A convenience store recently started to carry a new brand of soft drink. Management is interested in estimating future sales volume to determine whether it should continue to carry the new brand or replace it with another brand. The following table provides the number of cans sold per week. Use both the trend projection with regression and the exponential smoothing (let
alphaαequals=0.40.4
with an initial forecast for week 1 of
574574)
methods to forecast demand for week
1313.
Compare these methods by using the mean absolute deviation and mean absolute percent error performance criteria. Does your analysis suggest that sales are trending and if so, by how much?
Period |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Sales |
574 |
635 |
643 |
732 |
650 |
610 |
729 |
706 |
677 |
716 |
651 |
735 |
(i) Obtain the trend projection with regression forecast.
Solving for regression coefficients
Calculating the intermediate values as shown in the table
Period (x) | Sales (y) | xy | x square | |
1 | 574 | 574 | 1 | |
2 | 635 | 1270 | 4 | |
3 | 643 | 1929 | 9 | |
4 | 732 | 2928 | 16 | |
5 | 650 | 3250 | 25 | |
6 | 610 | 3660 | 36 | |
7 | 729 | 5103 | 49 | |
8 | 706 | 5648 | 64 | |
9 | 677 | 6093 | 81 | |
10 | 716 | 7160 | 100 | |
11 | 651 | 7161 | 121 | |
12 | 735 | 8820 | 144 | |
Sum | 78 | 8058 | 53596 | 650 |
So, from the above table, we have calculated
Substituting these values to get b and a
So, Y = 616.09+8.524x
Value at x =13,
Y = 616.09+ (8.524*13) = 726.9
To calculate the MAD and MAPE , we need to calculate the error terms
Period (x) | Sales (y) Dt | Forecast | Error (et) | Abs Error |et| | Abs % error |et/Dt| |
1 | 574 | 624.62 | -50.62 | 50.62 | 8.82% |
2 | 635 | 633.14 | 1.86 | 1.86 | 0.29% |
3 | 643 | 641.66 | 1.34 | 1.34 | 0.21% |
4 | 732 | 650.19 | 81.81 | 81.81 | 11.18% |
5 | 650 | 658.71 | -8.71 | 8.71 | 1.34% |
6 | 610 | 667.24 | -57.24 | 57.24 | 9.38% |
7 | 729 | 675.76 | 53.24 | 53.24 | 7.30% |
8 | 706 | 684.29 | 21.71 | 21.71 | 3.08% |
9 | 677 | 692.81 | -15.81 | 15.81 | 2.34% |
10 | 716 | 701.34 | 14.66 | 14.66 | 2.05% |
11 | 651 | 709.86 | -58.86 | 58.86 | 9.04% |
12 | 735 | 718.38 | 16.62 | 16.62 | 2.26% |
Sum | 0.00 | 382.48 | 57.28% |
In this table, the error is (Dt- Forecasted value)
So MAD =31.87 and MAPE = 4.77%
Now calculating for exponential smoothening
For t=1, we take Ft = Dt and then calculate for other values as shown in table
Period (x) | Sales (y) Dt | Forecast |
1 | 574 | 574.00 |
2 | 635 | 574.00 |
3 | 643 | 598.40 |
4 | 732 | 616.24 |
5 | 650 | 662.54 |
6 | 610 | 657.53 |
7 | 729 | 638.52 |
8 | 706 | 674.71 |
9 | 677 | 687.23 |
10 | 716 | 683.14 |
11 | 651 | 696.28 |
12 | 735 | 678.17 |
13 | 700.90 |
The forecast for 13th week is 700.9
Now calculating the error terms
alpha | 0.4 | 0.6 | |||
Period (x) | Sales (y) Dt | Forecast | Error (et) | Abs Error |et| | Abs % error |et/Dt| |
1 | 574 | 574.00 | 0.00 | 0.00 | 0.00% |
2 | 635 | 574.00 | 61.00 | 61.00 | 9.61% |
3 | 643 | 598.40 | 44.60 | 44.60 | 6.94% |
4 | 732 | 616.24 | 115.76 | 115.76 | 15.81% |
5 | 650 | 662.54 | -12.54 | 12.54 | 1.93% |
6 | 610 | 657.53 | -47.53 | 47.53 | 7.79% |
7 | 729 | 638.52 | 90.48 | 90.48 | 12.41% |
8 | 706 | 674.71 | 31.29 | 31.29 | 4.43% |
9 | 677 | 687.23 | -10.23 | 10.23 | 1.51% |
10 | 716 | 683.14 | 32.86 | 32.86 | 4.59% |
11 | 651 | 696.28 | -45.28 | 45.28 | 6.96% |
12 | 735 | 678.17 | 56.83 | 56.83 | 7.73% |
Sum | 317.25 | 548.41 | 79.71% |
So MAD =45.7 and MAPE = 6.64%
So, the summary of both the method is
Regression method | Exponential Smoothening | |||
13th week | 726.9 | 13th week | 700.9 | |
MAD | 31.87 | MAD | 45.70 | |
MAPE | 4.77% | MAPE | 6.64% |
1)
Trend projection with regression forecast
Steps