Question

In: Advanced Math

Let S be the set of all codes over Fq of length n.LetC1, C2∈ S.DefineC1∼C2to mean...

Let S be the set of all codes over Fq of length n.LetC1, C2∈ S.DefineC1∼C2to mean that there exists an n×n monomial matrix M such that C1=M C2.Probe that∼is an equivalence relation on S.LetC1, C2such that C1∼C2. Do C1 and C2have the same dimension?,length?, minimum distance?, if C1is self-orthogonal, is also C1 self-orthogonal?.

Solutions

Expert Solution


Related Solutions

Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to...
Recall that the set {0,1}∗ is the set of all finite-length binary strings. Let f:{0,1}∗→{0,1}∗ to be f(x1x2…xk)=x2x3…xkx1. That is, f takes the first bit of a string x and moves it to the end of x, so for example a string 100becomes 001; if |x|≤1, then f(x)=x Also, suppose that g:{0,1}∗→{0,1}∗ is a function such that g(x1…xk)=0x1…xk (that is, gg puts an extra 0 in front of the given string, so for example g(100)=0100. Everywhere in this question we...
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
Let S be the set of all integers x > 6543 such that the decimal representation...
Let S be the set of all integers x > 6543 such that the decimal representation of x has distinct digits, none of which is equal to 7, 8, or 9. (The decimal representation does not have leading zeros.) Determine the size of the set S. (do not just write out all elements of S.)
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that...
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that X consists of 8 elements and that a metric d on X can be defined by ∀x,y ∈ X: d(x,y) := Number of places where x and y have different entries. 2: Show that the non-negativity of a metric can be deduced from only Axioms (M2), (M3), and (M4). 3: Let (X,d) be a metric space. Show that another metric D on X can...
Let S be the set of all integers x ∈ {1,2,...,100} such that the decimal representation...
Let S be the set of all integers x ∈ {1,2,...,100} such that the decimal representation of x does not contain the digit 4. (The decimal representation does not have leading zeros.) • Determine the size of the set S without using the Complement Rule. • Use the Complement Rule to determine the size of the set S. (You do not get marks if you write out all numbers from 1 to 100 and mark those that belong to the...
Let S be the set of all natural numbers that are describable in English words using...
Let S be the set of all natural numbers that are describable in English words using no more than 50 characters (so, 240 is in S since we can describe it as “two hundred forty”, which requires fewer than 50 characters). Assuming that we are allowed to use only the 27 standard characters (the 26 letters of the alphabet and the space character), show that there are only finitely many numbers contained in S. (In fact, perhaps you can show...
Let S be a set and P be a property of the elements of the set,...
Let S be a set and P be a property of the elements of the set, such that each element either has property P or not. For example, maybe S is the set of your classmates, and P is "likes Japanese food." Then if s ∈ S is a classmate, he/she either likes Japanese food (so s has property P) or does not (so s does not have property P). Suppose Pr(s has property P) = p for a uniformly...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT