Question

In: Advanced Math

1)Let S be the set of all students at a college. Define a relation on the...

1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer.

2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation on S? Justify.

Solutions

Expert Solution

Please feel free to ask for any query and rate positively.


Related Solutions

1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by...
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by (a,b)R(c,d) iff ad = bc Write out each equivalence class (by "write out" I mean tell me explicitly which elements of A are in each equivalence class) Hint: |A| = 16 and there are 11 equivalence classes, so there are several equivalence classes that consist of a single element of A.
Let S = {-3, -2, -1, 0, 1, 2, 3}. Define a relation R on S...
Let S = {-3, -2, -1, 0, 1, 2, 3}. Define a relation R on S by: xRy if and only if x = y + 4n for some integer n. a) Prove that R is an equivalence relation. b) Find all the distinct equivalence classes of R.
On the set S of all real numbers, define a relation R = {(a, b):a ≤ b}. Show that R is transitive.
On the set S of all real numbers, define a relation R = {(a, b):a ≤ b}. Show that R is transitive.
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that...
1: Let X be the set of all ordered triples of 0’s and 1’s. Show that X consists of 8 elements and that a metric d on X can be defined by ∀x,y ∈ X: d(x,y) := Number of places where x and y have different entries. 2: Show that the non-negativity of a metric can be deduced from only Axioms (M2), (M3), and (M4). 3: Let (X,d) be a metric space. Show that another metric D on X can...
Suppose we define the relation R on the set of all people by the rule "a...
Suppose we define the relation R on the set of all people by the rule "a R b if and only if a is Facebook friends with b." Is this relation reflexive? Is is symmetric? Is it transitive? Is it an equivalence relation? Briefly but clearly justify your answers.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
Given a natural number q ≥ 1, define a relation ∼ on the set Z by...
Given a natural number q ≥ 1, define a relation ∼ on the set Z by x ∼ y if x - y is divisible by q. (i) Show that ∼ is an equivalence relation. We will denote the set of equivalence classes defined by ∼ with Z=qZ. Also let x mod q denote the equivalence class to which an integer x belongs. (ii) Check that the operations (x (x mod q) + (y mod q) · (y mod q)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT