Question

In: Statistics and Probability

Let S be the set of all natural numbers that are describable in English words using...

Let S be the set of all natural numbers that are describable in English words using no more than 50 characters (so, 240 is in S since we can describe it as “two hundred forty”, which requires fewer than 50 characters). Assuming that we are allowed to use only the 27 standard characters (the 26 letters of the alphabet and the space character), show that there are only finitely many numbers contained in S. (In fact, perhaps you can show that there can be no more than 27⁵⁰ elements in S). Now, let the set T be all those natural numbers not in S. Show that there are infinitely many elements in T. Next, since T is a collection of natural numbers, show that it must contain a smallest number. Finally, consider the smallest number contained in T. Prove that this number must simultaneously be an element of S and not an element of S – a paradox!

Solutions

Expert Solution

Let us consider N, which is the set of all Natural Numbers. The cardinality of the set is infinite and hence there are a countably infinite number of elements in this set.

Now, the set S is defined to consist of elements that are describable in English words with no more than 50 characters. Each of the characters can be either of 27 possibilities and this also includes a space. Therefore, a random arrangement of these characters can give rise to 27^50 combinations. Several of them will not be meaningful and hence, the maximum number of natural numbers that belong to S will be less than 27^50 which is a finite number.

Now, the set T has all the natural numbers that are not in set S. Therefore, T is a complementary set of S. Taking out finite numbers from an infinite set, still leaves infinite numbers and hence there are infinite elements in set S.

Lastly, natural number set has a smallest number i.e. 0. This number belongs to set S. We can continue counting upwards until we reach a number that requires more than 50 letters to describe and hence will belong to set T. This will be the first element of set T and also will be the smallest element in T. However, this number X which cannot be described with 50 characters can also be described as "smallest element of T". This phrase is an element of set S and hence the smallest number in T does indeed belong to S.

Therefore, this is a paradox.


Related Solutions

Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Let the cardinal number of N, the set of all natural numbers, be א0. Prove that...
Let the cardinal number of N, the set of all natural numbers, be א0. Prove that the product set N × N = {(m,n);m ∈ N,n ∈ N} has the same cardinal number. Further prove that Q+, the set of all positive rational numbers, has the cardinal number N_0. Hint: You may use the formula 2^(m−1)(2n − 1) to define a function from N × N to N, see the third example on page 214 of the textbook.
Let S be the set of natural numbers which can be written as a non-empty string...
Let S be the set of natural numbers which can be written as a non-empty string of ones followed by a non-empty string of zeroes. For example, 10, 111100 and 11100000 are all in S, but 11 and 1110011 are not in S. Prove that there exists a natural number n∈S, such that 2018 | n.
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and...
Let S be the set of all ordered pairs of real numbers. Define scalar multiplication and addition on S by: α(x1,x2)=(αx1,αx2) (x1,x2)⊕(y1,y2)=(x1 +y1,0) We use the symbol⊕to denote the addition operation for this system in order to avoid confusion with the usual addition x+y of row vectors. Show that S, together with the ordinary scalar multiplication and the addition operation⊕, is not a vector space. Test ALL of the eight axioms and report which axioms fail to hold.
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Define d to be the set of all pairs (x,y) of natural numbers such that x...
Define d to be the set of all pairs (x,y) of natural numbers such that x divides y. Show that N is partially ordered by d. Define d analogously on Z. Is then d also a partial order on Z?
From a set of all eight-digit natural numbers, where only the digits from the set {0,1,...
From a set of all eight-digit natural numbers, where only the digits from the set {0,1, 3, 5, 7, 9} are present in decimal notation. we draw one. Calculate the probability of the event that the sum of digits of the drawn number is equal to 3.
Let V be the set of all ordered triples of real numbers. For u = (u1,...
Let V be the set of all ordered triples of real numbers. For u = (u1, u2, u3) and v = (v1, v2, v3), we define the following operations of addition and scalar multiplication on V : u + v = (u1 + v1, u2 + v2 − 1, u3 + v3 − 2) and ku = (ku1, ku2, ku3). For example, if u = (1, 0, 3), v = (2, 1, 1), and k = 2 then u +...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT