Question

In: Math

Let s(t)= ?? ? − ??? ? − ???? be the equation for a motion particle....

Let s(t)= ?? ? − ??? ? − ???? be the equation for a motion particle.

Find: a. the function for velocity v(t). Explain. [10]

b. where does the velocity equal zero? Explain. [20

] c. the function for the acceleration of the particle [10]

d. Using the example above explain the difference between average velocity and instantaneous velocity. (A Graph will be extremely helpful) [25]

e. What condition of the function for the moving particle needs to be present in order for the function not to have a derivative? Use any one of the conditions studied in this chapter to make your case. Specifically explain why the function would not have a derivative given that particular condition. Please draw a picture of the hypothetical scenario using that condition and use the term “continuity” in your explanation.

[35]

Solutions

Expert Solution


Related Solutions

The motion of a particle in space is described by the vector equation ⃗r(t) = 〈sin...
The motion of a particle in space is described by the vector equation ⃗r(t) = 〈sin t, cos t, t〉 Identify the velocity and acceleration of the particle at (0,1,0) How far does the particle travel between t = 0 & t= pi What's the curvature of the particle at (0,1,0) & Find the tangential and normal components of the acceleration particle at (0,1,0)
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t)...
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t) + t ^ 2 + 7. Find the speed of the particle when its acceleration is zero. 2.Approximate the area bounded by the graph of y = -x ^ 2 + x + 2, the y-axis, the x-axis, and the line x = 2. a) Using Reimmann sums with 4 subintervals and the extreme points on the right. b) Using Reimmann sums with 4...
A particle moves according to a law of motion s = f(t), t is greater than...
A particle moves according to a law of motion s = f(t), t is greater than or equal to 0, where t is measured in seconds and ? in feet. f(t)=t^2 • e^(-t) a) fine velocity at rime t and after 1 second b) when is the particle at rest c) fine the acceleration at time t and after 1 second
An equation of motion is given, where s is in meters and t in seconds. Find...
An equation of motion is given, where s is in meters and t in seconds. Find (a) the times at which the acceleration is zero, and (b) the velocity at these times. t^4-10t^3+36t^2+2
Let {W(t),t≥0} be a standard Brownian motion and let M(t)=max0≤s≤tW(s). Find P(M(9)≥3).
Let {W(t),t≥0} be a standard Brownian motion and let M(t)=max0≤s≤tW(s). Find P(M(9)≥3).
The projectile motion equation is s(t)=-16t^2+vt+h where s(t) represents the distance or height of an object...
The projectile motion equation is s(t)=-16t^2+vt+h where s(t) represents the distance or height of an object at time t, v represents the initial speed of the object in ft/s, and h is the initial height of the object, measured in feet. If an object is starting at rest, then v=0 (such as for a penny being dropped from a building). If the object is starting from the ground, h=0. The baseball or cannonball situations, each have an initial velocity. For...
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) +...
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) + 0.61m*cos(8.9rad/s(t)). A) Determine the position and velocity when t = 0 seconds. B) Determine the maximum displacement of the system. C) Determine the maximum acceleration of the system. D) Determine the velocity of the system at t = 6 seconds.
The x and y coordinates of a particle in motion as functionsof time t, are given...
The x and y coordinates of a particle in motion as functionsof time t, are given by: x=5t^2-5t+6 y=3t^3-3t^2-12t-4 At the instant the x-component of velocity is equal to zero,the y component of the acceleration is closest to: A. 12 B. -24 C. -15 D. -1.5 E. 3.0
Using the minimal action principle obtain the equation of motion of the free particle from the...
Using the minimal action principle obtain the equation of motion of the free particle from the relativistic Lagrangian.
Derive the wave propagation equation for particle motion collinear with the direction of propagation. Assume a...
Derive the wave propagation equation for particle motion collinear with the direction of propagation. Assume a homogeneous, isotropic, linear-elastic, infinite, continuum medium. Follow your class notes, and clearly identify all assumptions made along the way. Then, assume the solution to the wave equation, i.e., the particle motion, replace into the differential equation and …. conclude!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT