Question

In: Physics

6.00 gg of nitrogen gas at 17.0 ∘C and an initial pressure of 2.60 atm undergo...

6.00 gg of nitrogen gas at 17.0 ∘C and an initial pressure of 2.60 atm undergo an isobaric expansion until the volume has tripled.
1/How much heat energy is transferred to the gas to cause this expansion?
2/The gas pressure is then decreased at constant volume until the original temperature is reached. What is the gas pressure after the decrease?
3/What amount of heat energy is transferred from the gas as its pressure decreases?

Solutions

Expert Solution


Related Solutions

1. A sample of nitrogen gas at a pressure of 0.947 atm and a temperature of...
1. A sample of nitrogen gas at a pressure of 0.947 atm and a temperature of 213 °C, occupies a volume of 687 mL. If the gas is cooled at constant pressure until its volume is 570 mL, the temperature of the gas sample will be 2. A helium-filled weather balloon has a volume of 615 L at 23 °C and 754 mm Hg. It is released and rises to an altitude of 7.93 km, where the pressure is 323...
A 5.00-L flask contains nitrogen gas at 25°C and 1.00 atm pressure. What is the final...
A 5.00-L flask contains nitrogen gas at 25°C and 1.00 atm pressure. What is the final pressure in the flask if an additional 2.00 g of N2 gas is added to the flask and the flask cooled to -55°C? a.) 0.987 atm b.) 1.35 atm c.) 1.84 atm d.) 0.255 atm
15 g of nitrogen gas at STP are adiabatically compressed to a pressure of 21 atm...
15 g of nitrogen gas at STP are adiabatically compressed to a pressure of 21 atm . What is the final temperature of the gas? What is the work done on the gas? What is the heat input to the gas? What is the compression ratio Vmax/Vmin?
Starting with 2.50 mol of nitrogen gas (N2) in a container at 1.00 atm pressure and...
Starting with 2.50 mol of nitrogen gas (N2) in a container at 1.00 atm pressure and 20.0 °C temperature, a student heats the gas at constant volume with 15.2 kJ of heat, then continues heating while allowing the gas to expand at constant pressure, until it is at twice its original volume. What is the final temperature of the gas? How much work was done by the gas? How much heat was added to the gas while it was expanding?...
2.50 mole of perfect gas at 0°C is expanded from an initial pressure of 5.00 atm...
2.50 mole of perfect gas at 0°C is expanded from an initial pressure of 5.00 atm to a final pressure of 1.00 atm against a constant external pressure of 1.00 atm. (a) isothermally and (b) adiabatically. (1) Calculate the values of q, w, DU, DH, DS, DSsur and DStot for (a) and (b) (2) Draw p -V diagram to represent these two different paths.
A sample of a gas at an initial pressure of 1.0 ATM is expanded at constant...
A sample of a gas at an initial pressure of 1.0 ATM is expanded at constant temp from 10.L to 15L. Calculate the final pressure of the gas
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The...
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The gas undergoes an isochoric increase in pressure to 2.31 atm, then an isobaric expansion to 114 cm3. Pressure is reduced isochorically to the original pressure before an isobaric compression returns the gas to its initial values. For 1.95 moles of the gas, complete the following: a) Generate a sketch of the PV diagram, with values clearly represented. b) Find the heat absorbed and heat...
A sample of gas has initial volume of 23.7 L at a pressure of 1.71 ATM...
A sample of gas has initial volume of 23.7 L at a pressure of 1.71 ATM if the sample is compressed to a volume of 10.7 L what will it’s pressure be
Temperature of Distilled H2O = 22 *C Room (or regional) Pressure (atm) = 0.04 atm Initial...
Temperature of Distilled H2O = 22 *C Room (or regional) Pressure (atm) = 0.04 atm Initial Volume of Air (mL) = 10 mL Final Volume of Air (after reaction) (mL) = 40 mL Volume of O2 Collected (Final Volume - Initial Volume) = 30 mL w/ 5 mL H2O2 solution used. Given the above variables, determine the percentage of hydrogen peroxide in your solution.
At 46°C a sample of ammonia gas exerts a pressure of 3.51 atm. What is the...
At 46°C a sample of ammonia gas exerts a pressure of 3.51 atm. What is the pressure when the volume of the gas is reduced to one-third of the original value at the same temperature?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT