Question

In: Math

The motion of a particle in space is described by the vector equation ⃗r(t) = 〈sin...

The motion of a particle in space is described by the vector equation

⃗r(t) = 〈sin t, cos t, t〉

Identify the velocity and acceleration of the particle at (0,1,0) How far does the particle travel between t = 0 & t= pi

What's the curvature of the particle at (0,1,0) & Find the tangential and normal components of the acceleration particle at (0,1,0)

Solutions

Expert Solution


Related Solutions

The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) +...
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) + 0.61m*cos(8.9rad/s(t)). A) Determine the position and velocity when t = 0 seconds. B) Determine the maximum displacement of the system. C) Determine the maximum acceleration of the system. D) Determine the velocity of the system at t = 6 seconds.
Let s(t)= ?? ? − ??? ? − ???? be the equation for a motion particle....
Let s(t)= ?? ? − ??? ? − ???? be the equation for a motion particle. Find: a. the function for velocity v(t). Explain. [10] b. where does the velocity equal zero? Explain. [20 ] c. the function for the acceleration of the particle [10] d. Using the example above explain the difference between average velocity and instantaneous velocity. (A Graph will be extremely helpful) [25] e. What condition of the function for the moving particle needs to be present...
The equation x(t) = A sin(ωt + φ) describes the simple harmonic motion of a block...
The equation x(t) = A sin(ωt + φ) describes the simple harmonic motion of a block attached to a spring with spring constant k = 20 N/m. At t = 0 s, x = 0.5 m and the block is at rest. a (5 points) After 0.5 s, the potential energy stored in the spring first reaches zero and the velocity of the block is in the negative x direction. What is the period of the oscillation? b (5 points)...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the...
Consider the vector function given below. r(t) = 2t, 3 cos(t), 3 sin(t) (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t)   =    N(t)   =    (b) Use this formula to find the curvature. κ(t) =
15. a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3...
15. a. Find the unit tangent vector T(1) at time t=1 for the space curve r(t)=〈t3 +3t, t2 +1, 3t+4〉. b. Compute the length of the space curve r(t) = 〈sin t, t, cos t〉 with 0 ≤ t ≤ 6.
Determine whether the curve denoted by the vector function r(t) = <2 + sin(5t), -6, 3/2...
Determine whether the curve denoted by the vector function r(t) = <2 + sin(5t), -6, 3/2 (cos(5t))> lies on the surface 9x^2 - 36x - y^2 + 4z^2 = -36.
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t)...
1.The position of a particle in rectilinear motion is given by s (t) = 3sen (t) + t ^ 2 + 7. Find the speed of the particle when its acceleration is zero. 2.Approximate the area bounded by the graph of y = -x ^ 2 + x + 2, the y-axis, the x-axis, and the line x = 2. a) Using Reimmann sums with 4 subintervals and the extreme points on the right. b) Using Reimmann sums with 4...
Let C(R) be the vector space of continuous functions from R to R with the usual...
Let C(R) be the vector space of continuous functions from R to R with the usual addition and scalar multiplication. Determine if W is a subspace of C(R). Show algebraically and explain your answers thoroughly. a. W = C^n(R) = { f ∈ C(R) | f has a continuous nth derivative} b. W = {f ∈ C^2(R) | f''(x) + f(x) = 0} c. W = {f ∈ C(R) | f(-x) = f(x)}.
Consider the one-dimensional motion of a particle of mass ? in a space where uniform gravitational...
Consider the one-dimensional motion of a particle of mass ? in a space where uniform gravitational acceleration ? exists. Take the vertical axis ?. Using Heisenberg's equation of motion, find the position-dependent operators ? ? and momentum arithmetic operator ?? in Heisenberg display that depend on time. In addition, calculate ??, ?0, ??, ?0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT