Question

In: Statistics and Probability

1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0,...

1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0, 1]. These random variables represent successive bigs on an asset that you are trying to sell, and that you must sell by time = t, when the asset becomes worthless. As a strategy, you adopt a secret number \Theta and you will accept the first offer that's greater than \Theta . The offers arrive according to a Poisson process with rate \lambda = 1. For example, you accept the second offer if U1 <= \Theta and U2 > \Theta . What is the probability that you sell the asset by time = t? What value for \Theta maximizes your expected return?

2) Stochastic

Solutions

Expert Solution


Related Solutions

Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1)....
Let X, Y and Z be independent random variables, each uniformly distributed on the interval (0,1). (a) Find the cumulative distribution function of X/Y. (b) Find the cumulative distribution function of XY. (c) Find the mean and variance of XY/Z.
Let B = {u1,u2} where u1 = 1 and u2 = 0    0 1 and...
Let B = {u1,u2} where u1 = 1 and u2 = 0    0 1 and B' ={ v1 v2] where v1= 2 v2= -3 1 4 be bases for R2 find 1.the transition matrix from B′ to B 2. the transition matrix from B to B′ 3.[z]B if z = (3, −5) 4.[z]B′ by using a transition matrix 5. [z]B′ directly, that is, do not use a transition matrix
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the...
Let X and Y be independent and uniformly distributed random variables on [0, 1]. Find the cumulative distribution and probability density function of Z = X + Y.
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the...
Let X and Y be uniformly distributed independent random variables on [0, 1]. a) Compute the expected value E(XY ). b) What is the probability density function fZ(z) of Z = XY ? Hint: First compute the cumulative distribution function FZ(z) = P(Z ≤ z) using a double integral, and then differentiate in z. c) Use your answer to b) to compute E(Z). Compare it with your answer to a).
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let...
Let U and V be independent continuous random variables uniformly distributed from 0 to 1. Let X = max(U, V). What is Cov(X, U)?
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1....
Let Y and Z be independent continuous random variables, both uniformly distributed between 0 and 1. 1. Find the CDF of |Y − Z|. 2. Find the PDF of |Y − Z|.
Let A, B, and C be independent random variables, uniformly distributed over [0,4], [0,2], and [0,3]...
Let A, B, and C be independent random variables, uniformly distributed over [0,4], [0,2], and [0,3] respectively. What is the probability that both roots of the equation Ax2+Bx+C=0 are real?
Let X and Y be independent continuous random variables, with each one uniformly distributed in the...
Let X and Y be independent continuous random variables, with each one uniformly distributed in the interval from 0 to1. Compute the probability of the following event. XY<=1/7
Let A, B, and C be independent random variables, uniformly distributed over [0,6],[0,11], and [0,2] respectively....
Let A, B, and C be independent random variables, uniformly distributed over [0,6],[0,11], and [0,2] respectively. What is the probability that both roots of the equation Ax^2+Bx+C=0 are real?
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...
2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT