Question

In: Statistics and Probability

2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on...

2. Let X1, X2, . . . , Xn be independent, uniformly distributed random variables on the interval [0, θ]. (a) Find the pdf of X(j) , the j th order statistic. (b) Use the result from (a) to find E(X(j)). (c) Use the result from (b) to find E(X(j)−X(j−1)), the mean difference between two successive order statistics. (d) Suppose that n = 10, and X1, . . . , X10 represents the waiting times that the n = 10 people must wait at a bus stop for their bus to arrive. Interpret the result of (c) in the context of this scenario.

Solutions

Expert Solution

A bit theory

Suppose that denotes a random sample of size m from a continuous pdf f(y) and cdf F(y), where f(y)>0 for , a<y<b. Then the pdf of i th order statistic, be,

for and 0 otherwise.

Solution

Now here be independent, uniformly distributed random variables on the interval with pdf,

And the cdf as,

(a) So the pdf of j th order statistic be,

(b) Now we have,

, assuming and as

(c) So here we have,

(d) So here we suppose that n=10, and represent the waiting times that the n=10 people must wait at a bus stop for their bus to arrive. Then represents j th order waiting time where that person arrived at the bus stop after n-j people. So here we note that the waiting time difference of j th and j-1 th person doesnot depend on the value of j hence it is independent if the ordering of people according to first come first one to board in the bus basis.

Hence the answer...............

Thank you...........


Related Solutions

Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to...
Let X1,X2,… be a sequence of independent random variables, uniformly distributed on [0,1]. Define Nn to be the smallest k such that X1+X2+⋯+Xn exceeds cn=n2+12n−−√, namely, Nn = min{k≥1:X1+X2+⋯+Xk>ck} Does the limit limn→∞P(Nn>n) exist? If yes, enter its numerical value. If not, enter −999. unanswered Submit You have used 1 of 3 attempts Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.
Let X1, X2, . . . be a sequence of independent and identically distributed random variables...
Let X1, X2, . . . be a sequence of independent and identically distributed random variables where the distribution is given by the so-called zero-truncated Poisson distribution with probability mass function; P(X = x) = λx/ (x!(eλ − 1)), x = 1, 2, 3... Let N ∼ Binomial(n, 1−e^−λ ) be another random variable that is independent of the Xi ’s. 1) Show that Y = X1 +X2 + ... + XN has a Poisson distribution with mean nλ.
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. (...
Problem 1 Let X1, X2, . . . , Xn be independent Uniform(0,1) random variables. ( a) Compute the cdf of Y := min(X1, . . . , Xn). (b) Use (a) to compute the pdf of Y . (c) Find E(Y ).
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on...
6. Let X1, X2, ..., X101 be 101 independent U[0,1] random variables (meaning uniformly distributed on the unit interval). Let M be the middle value among the 101 numbers, with 50 values less than M and 50 values greater than M. (a). Find the approximate value of P( M < 0.45 ). (b). Find the approximate value of P( | M- 0.5 | < 0.001 ), the probability that M is within 0.001 of 1/2.
Let X1,...,Xn be exponentially distributed independent random variables with parameter λ. (a) Find the pdf of...
Let X1,...,Xn be exponentially distributed independent random variables with parameter λ. (a) Find the pdf of Yn= max{X1,...,Xn}. (b) Find E[Yn]. (c) Find the median of Yn. (d) What is the mean for n= 1, n= 2, n= 3? What happens as n→∞? Explain why.
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi...
Let X1,...,Xn be independent random variables,and let X=X1+...+Xn be their sum. 1. Suppose that each Xi is geometric with respective parameter pi. It is known that the mean of X is equal to μ, where μ > 0. Show that the variance of X is minimized if the pi's are all equal to n/μ. 2. Suppose that each Xi is Bernoulli with respective parameter pi. It is known that the mean of X is equal to μ, where μ >...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean...
Let X1, X2, . . . , Xn be iid Poisson random variables with unknown mean µ 1. Find the maximum likelihood estimator of µ 2.Determine whether the maximum likelihood estimator is unbiased for µ
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n,...
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n, 0.5) for n ≥ 1. Let N ∼ Geo(0.5) and assume it is independent of X1, X2, . . .. Further define T = XN . (a) Find E(T) and argue that T is short proper. (b) Find the pgf of T. (c) Use the pgf of T in (b) to find P(T = n) for n ≥ 0. (d) Use the pgf of...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a)...
Let X1, X2,..., Xnbe independent and identically distributed exponential random variables with parameter λ . a) Compute P{max(X1, X2,..., Xn) ≤ x} and find the pdf of Y = max(X1, X2,..., Xn). b) Compute P{min(X1, X2,..., Xn) ≤ x} and find the pdf of Z = min(X1, X2,..., Xn). c) Compute E(Y) and E(Z).
Let X1, X2,...,Xn be independent random variables from Normal (mu, sigma_i^2), i=1, 2,...,n, where mu is...
Let X1, X2,...,Xn be independent random variables from Normal (mu, sigma_i^2), i=1, 2,...,n, where mu is unknown and sigma_1^2, sigma_2^2,...,sigma_n^2 are known. Determine a sufficient statistic for mu. Derive the UMVUE and MLE of T(mu)=mu^3.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT