Question

In: Advanced Math

Let B = {u1,u2} where u1 = 1 and u2 = 0    0 1 and...

Let B = {u1,u2} where

u1 = 1 and u2 = 0   

0 1

and

B' ={ v1 v2] where v1= 2 v2= -3

1 4

be bases for R2

find

1.the transition matrix from B′ to B
2. the transition matrix from B to B′
3.[z]B if z = (3, −5)
4.[z]B′ by using a transition matrix
5. [z]B′ directly, that is, do not use a transition matrix

Solutions

Expert Solution


Related Solutions

1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0,...
1) Let U1, U2, ... be independent random variables, each uniformly distributed over the interval (0, 1]. These random variables represent successive bigs on an asset that you are trying to sell, and that you must sell by time = t, when the asset becomes worthless. As a strategy, you adopt a secret number \Theta and you will accept the first offer that's greater than \Theta . The offers arrive according to a Poisson process with rate \lambda = 1....
Consider a systematic (7,4) code whose parity-check equations are: v0=u0+u1+u2 v1=u1+u2+u3 v2=u0+u2+u3 where u0 u1 u2...
Consider a systematic (7,4) code whose parity-check equations are: v0=u0+u1+u2 v1=u1+u2+u3 v2=u0+u2+u3 where u0 u1 u2 and u3 are message digits and v0 v1 and v2 are parity-check digits. a)      Find the generator and parity-check matrices for this code.        b)     Construct an encoder circuit for the code.                                   c)      Find the codewords corresponding to the binary messages (1001), (1011), and (1110).                                                                                                                  
1)Test hypothesis? 2)Do we accept or Reject? H0: U1-U2=0 H1: U1-U2>0 X1: 501051 S1: 4000.64 X2:...
1)Test hypothesis? 2)Do we accept or Reject? H0: U1-U2=0 H1: U1-U2>0 X1: 501051 S1: 4000.64 X2: 52299.17 S2: 4000.01 N1: 2495 N2:2498
      With reference to equations (4.2) and (4.3), let Z1 = U1 and Z2 = −U2...
      With reference to equations (4.2) and (4.3), let Z1 = U1 and Z2 = −U2 be independent, standard normal variables. Consider the polar coordinates of the point (Z1, Z2), that is, A2 = Z2 + Z2 and   φ = tan−1(Z2/Z1). 1         2 (a)    Find the joint density of A2 and φ, and from the result, conclude that A2 and φ are independent random variables, where A2 is a chi- squared random variable with 2 df, and φ is uniformly distributed...
Let y = 4 -6 6 U1 = -2 -5 1 U2 = -2 2 6...
Let y = 4 -6 6 U1 = -2 -5 1 U2 = -2 2 6 Find the distance from y to the plane in R3 spanned by U1 and U2. Exact answer please.
#1 (a) Express, if possible,b= (7,8,9) as a linear combination of u1= (2,1,4),u2= (1,−1,3),u3= (3,2,5) (b)...
#1 (a) Express, if possible,b= (7,8,9) as a linear combination of u1= (2,1,4),u2= (1,−1,3),u3= (3,2,5) (b) What is Span{u1,u2,u3}? (c) Is the set{u1,u2,u3}linearly independent? #2 Considerv1= (1,2,1,1),v2= (1,1,3,1) and v3= (3,5,5,3). Find a homogeneoussystem the solution of which is Span{v1,v2,v3}. (Hint: Consider x= (x1, x2, x3, x4) where x=sv1+tv2+rv3 and look for conditions on x1, . . . , x4 where this system is consistent)
1. Show that if λ1 and λ2 are different eigenvalues of A and u1 and u2...
1. Show that if λ1 and λ2 are different eigenvalues of A and u1 and u2 are associated eigenvectors, then u1 and u2 are independent. More generally, show that if λ1, ..., λk are distinct eigenvalues of A and ui is an eigenvector associated to λi for i=1, ..., k, then u1, ..., uk are independent. 2. Show that for each eigenvalue λ, the set E(λ) = {u LaTeX: \in∈Rn: u is an eigenvector associated to λ} is a subspace...
Let V = R4 and let U = hu1, u2i, where u1 =   ...
Let V = R4 and let U = hu1, u2i, where u1 =    1 2 0 −3    , u2 =     1 −1 1 0    . 1. Determine dimU and dimV/U. 2. Let v1 =    1 0 0 −3    , v2 =     1 2 0 0    , v3 =     1 3...
Could you please guide on how to approach this confidence interval review problem? Let U1, U2,...
Could you please guide on how to approach this confidence interval review problem? Let U1, U2, · · · , Un be i.i.d observations from Uniform(0, θ), where θ > 0 is unknown. Suppose U(1) = min{U1, U2, · · · , Un} and U(n) = max{U1, U2, · · · , Un}. Show that for any α ∈ (0, 1), (U(1), α-1/nU(n)) is a (1 − α) level confidence interval for θ.
1) A) Write v as a linear combination of u1, u2, and u3, if possible. (Enter...
1) A) Write v as a linear combination of u1, u2, and u3, if possible. (Enter your answer in terms of u1, u2, and u3. If not possible, enter IMPOSSIBLE.) v = (−1, 7, 2), u1 = (2, 1, 5), u2 = (2, −3, 1), u3 = (−2, 3, −1) B) Write v as a linear combination of u and w, if possible, where u = (1, 3) and w = (2, −1). (Enter your answer in terms of u...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT