Question

In: Statistics and Probability

Let z be a standard normal random variable with a mean of 0 and a standard...

Let z be a standard normal random variable with a mean of 0 and a standard devi- ation of 1. Find the following probabilities:

(a) P(−0.5<z<0.5) (b) P(−.5<z<1.5)

(c) P(−1.5<z<−.75) (d) P(2<z<3)

Solutions

Expert Solution

Let z be a standard normal random variable with a mean of 0 and a standard deviation of 1.

Q.1) We want to find, the following probabilities,

a) P(-0.5 < z < 0.5)

= 2 * P(Z < 0.5) - 1

= 2 * 0.6915 - 1

= 1.3830 - 1

= 0.3830

=> P(-0.5 < z < 0.5) =  0.3830

b) P(-0.5 < z < 1.5)

= P(Z < 1.5) - P(Z < -0.5)

= 0.9332 - 0.3085

= 0.6247

=> P(-0.5 < z < 1.5) = 0.6247

c) P(-1.5 < z < -0.75)

= P(Z < -0.75) - P(Z < -1.5)

= 0.2266 - 0.0668

= 0.1598

=> P(-1.5 < z < -0.75) = 0.1598

d) P(2 < z < 3)

= P(Z < 3) - P(Z < 2)

= 0.9987 - 0.9332

= 0.0215

=> P(2 < z < 3) = 0.0215


Related Solutions

Let Z be a normal random variable with mean µ = 0 and standard deviation σ...
Let Z be a normal random variable with mean µ = 0 and standard deviation σ = 1, that is, Z ∼ N(0, 1). Find each of the following: (a) P(Z ≤ −1.13). (b) P(Z ≥ −2.18). (c) P(2.13 ≤ Z ≤ 2.57). (d) P(−2.3 ≤ Z ≤ −1.1). (e) P(0 ≤ Z ≤ 1.54). (f) P(−1.54 ≤ Z ≤ 1.54). (g) N(1.1243). (h) N(−1.1243).
1. Let  z be a normal random variable with mean 0 and standard deviation 1. What is...
1. Let  z be a normal random variable with mean 0 and standard deviation 1. What is P(-2.25 <  z < -1.1)? 0.1235 0.3643 0.8643 0.4878 You are offered an investment opportunity. Its outcomes and probabilities are presented in the following table. x P(x) -$1,000 .40 $0 .20 +$1,000 .40 ​ 2. The mean of this distribution is _____________. $400 $0 $-400 $200 3. T/F. The probability that the complement of an event will occur is given by P(E') = 1 -...
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤...
Let z be a random variable with a standard normal distribution. Find P(0 ≤ z ≤ 0.46), and shade the corresponding area under the standard normal curve. (Use 4 decimal places.)
QUESTION 1 If Z is a standard normal random variable, then P(Z > 0) =   0...
QUESTION 1 If Z is a standard normal random variable, then P(Z > 0) =   0 1 0.4579 0.5 1 points    QUESTION 2 Company A claims that 20% of people in Sydney prefer its product (Brand A). Company B disputes the 20% but has no idea whether a higher or lower proportion is appropriate.  Company B randomly samples 400 people and 88 of them prefer Company A's product (Brand A). Assuming a 5% significance level, which one of the following...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z|...
Let z be a random variable with a standard normal distribution. Find “a” such that P(|Z| <A)= 0.95 This is what I have: P(-A<Z<A) = 0.95 -A = -1.96 How do I use the symmetric property of normal distribution to make A = 1.96? My answer at the moment is P(|z|< (-1.96) = 0.95
Find the value of the standard normal random variable z , called z 0 such that:...
Find the value of the standard normal random variable z , called z 0 such that: a)  ?(?≤?0)=0.8998 ?0= (b)  ?(−?0≤?≤?0)=0.676 ?0= (c)  ?(−?0≤?≤?0)=0.198 ?0= (d)  ?(?≥?0)=0.1895 ?0= (e)  ?(−?0≤?≤0)=0.4425 ?0= (f)  ?(−1.11≤?≤?0)=0.8515 ?0=
4. If Z is a standard normal random variable, that is Z ∼ N(0, 1), (a)...
4. If Z is a standard normal random variable, that is Z ∼ N(0, 1), (a) what is P(Z 2 < 1)? (b) Find a number c such that P(Z < c) = 0.75 (c) Find a number d such that P(Z > d) = 0.83 (d) Find a number b such that P(−b < Z < b) = 0.95
Find a value of the standard normal random variable z ​, call it z 0​, such...
Find a value of the standard normal random variable z ​, call it z 0​, such that the following probabilities are satisfied. a. ​P(z less than or equals z 0​) equals 0.3027 b. ​P(minus z 0less than or equals z less than z 0​) equals 0.1518 c. ​P(z less than or equals z 0​) equals0.7659 d. ​P(z 0 less than or equals z less than or equals​ 0) equals 0.2706 e. ​P( minus z 0 less than or equals z...
Let z denote a random variable having a normal distribution with ? = 0 and ?...
Let z denote a random variable having a normal distribution with ? = 0 and ? = 1. Determine each of the probabilities below. (Round all answers to four decimal places.) (a) P(z < 0.3) =   (b) P(z < -0.3) =   (c) P(0.40 < z < 0.85) =   (d) P(-0.85 < z < -0.40) =   (e) P(-0.40 < z < 0.85) =   (f) P(z > -1.26) =   (g) P(z < -1.5 or z > 2.50) =
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible...
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible value of Z that is representing the 90th percentile of the standard normal distribution. Find the value of Z1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT