Question

In: Physics

2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference...

2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference pattern is produced on a screen kept 4.00 m away. The first dark fringe is formed at a distance 5.40 mm away from the center. (a) What is the separation between the two slits? [5]

(b) What is the distance on the screen from the center of the interference pattern to the 3rd minimum (m = 2)? [5]

(c) What is the shortest distance from the center where the intensity will reduce to 1/4 of the maximum intensity?   

Solutions

Expert Solution

For this We have to consider the general case of Young Double slit experiment (YDSE) , in which we take slit separation = d , Screen distance = D , and the linear distance of any fringe from central fringe as Y.
Hope so I have solved your doubt. Thanks and regards!


Related Solutions

Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference...
Light of wavelength illuminates a pair of slits and the first bright fringe of the interference pattern is seen at an angle of o from the central maximum. Find the separation between the slits. The equation did not have the values. Please solve with details.
Light of wavelength 600 nm is incident on a pair of slits 2,000 nm apart. Find...
Light of wavelength 600 nm is incident on a pair of slits 2,000 nm apart. Find the angular deviation of (a) the first minimum, (b) the first, second, and third maxima above the central one. (c) What is the longest wavelength for which there are four maxima above the central one? (d) The same light is incident on a diffraction grating with adjacent slits 2,000 nm apart. Compare and contrast the resulting interference pattern with that of the two-slit system.
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3...
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3 mm, producing an interference pattern on a screen that is 2.0 m away. You put a thin sheet of glass (n = 1.5) at the top slit and you observe a dark fringe the central location of the screen. Furthermore, the fourth bright spot on both sides of the central location is missing. (a) Sketch the resulting interference pattern. Precisely state the spacing between...
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent...
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent light source. A fringe pattern is observed on a screen 4.8 m from the slits. If there are 5.0 bright fringes/cm on the screen, what is the wavelength of the monochromatic light? A) 550 nm       B) 600 nm       C) 650 nm       D) 700 nm       E) 750 nm
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055...
1.Consider a 465 nm wavelength blue light falling on a pair of slits separated by 0.055 mm. A) At what angle (in degrees) is the first-order maximum for the blue light? \ 2.Suppose you have a lens system that is to be used primarily for 690 nm red light. B)What is the second thinnest coating of magnesium fluorite, which has an index of refraction of n = 1.38, that would be non-reflective for this wavelength? Assume the index of refraction...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.) A) The distance between the maxima stays the same. B) The distance between the maxima decreases. C) The distance between the minima stays the same. D) The distance between the minima increases. E) The distance between the maxima increases.
Two narrow slits 60 μm apart are illuminated with light of wavelength 500nm. The light shines...
Two narrow slits 60 μm apart are illuminated with light of wavelength 500nm. The light shines on a screen 1.2 m distant. How far is this fringe from the center of the pattern?
4. Light incident on a pair of slits produces an interference pattern on a screen 2.5...
4. Light incident on a pair of slits produces an interference pattern on a screen 2.5 m from the slits. Hint: Is the small-angle approximation justified in the following? (a) Determine the wavelength of the light if the slit separation is 0.0150 cm and the distance between adjacent bright fringes in the pattern is 0.760 cm. (b) Determine the distance between adjacent dark fringes if a 560 nm wavelength light source were shined through the same set up.
Light of wavelength 650 nm is incident on a long, narrow slit. Find the angle of...
Light of wavelength 650 nm is incident on a long, narrow slit. Find the angle of the first diffraction minimum for each of the following widths of the slit (a) 1 mm ............rad (b) 0.1 mm ...........rad (c) 0.01 mm ..........rad
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT