Question

In: Physics

9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits...

9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)

A) The distance between the maxima stays the same.

B) The distance between the maxima decreases.

C) The distance between the minima stays the same.

D) The distance between the minima increases.

E) The distance between the maxima increases.


Solutions

Expert Solution

apply Y = mLR/d

where d is slit width and Y is fringe width

so here if d decreses, Y increses

so correct answers are

D) The distance between the minima increases.

E) The distance between the maxima increases.


Related Solutions

A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent...
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent light source. A fringe pattern is observed on a screen 4.8 m from the slits. If there are 5.0 bright fringes/cm on the screen, what is the wavelength of the monochromatic light? A) 550 nm       B) 600 nm       C) 650 nm       D) 700 nm       E) 750 nm
Suppose you illuminate two thin slits by monochromatic coherent light in air and find that they...
Suppose you illuminate two thin slits by monochromatic coherent light in air and find that they produce their first interference minima at \pm 35.09 degrees on either side of the central bright spot. You then immerse these slits in a transparent liquid and illuminate them with the same light. Now you find that the first minima occur at \pm 19.48 degrees instead. a) What is the index of refraction of this liquid? Express your answer using four significant figures.
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3...
In Young’s experiment, monochromatic light of wavelength 600 nm shines on two slits separated by 0.3 mm, producing an interference pattern on a screen that is 2.0 m away. You put a thin sheet of glass (n = 1.5) at the top slit and you observe a dark fringe the central location of the screen. Furthermore, the fourth bright spot on both sides of the central location is missing. (a) Sketch the resulting interference pattern. Precisely state the spacing between...
2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference...
2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference pattern is produced on a screen kept 4.00 m away. The first dark fringe is formed at a distance 5.40 mm away from the center. (a) What is the separation between the two slits? [5] (b) What is the distance on the screen from the center of the interference pattern to the 3rd minimum (m = 2)? [5] (c) What is the shortest distance...
Monochromatic light of intensity I0=24.0 W/m2 is shone through two slits a distance d=2.2mm apart. A...
Monochromatic light of intensity I0=24.0 W/m2 is shone through two slits a distance d=2.2mm apart. A screen a distance L=1.0m away from the slits shows the resulting interference pattern. If at y=8.3cm from the center of the screen the intensity I=10.2W/m2, what is the wavelength of the light λ (in μm)?
a) 500 nm light shines through two slits with a width of 0.02 mm and a...
a) 500 nm light shines through two slits with a width of 0.02 mm and a separation of 0.08 mm. List the first two missing orders. b) How many bright spots are contained in the central diffraction maximum? c) What is the width of the central diffraction maximum? d) Find the angle (theta) associated with the first dark spot on the screen.
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits. 1. find angle from central maximum to first bright fringe 2. at what angle from central maximum does the second dark fringe appear? 3. find the distance (in m) from the central maximum to the first bright fringe.
A beam of light from a monochromatic laser shines into a piece of glass. The glass...
A beam of light from a monochromatic laser shines into a piece of glass. The glass has thickness L and index of refraction n=1.5 . The wavelength of the laser light in vacuum is L/10 and its frequency is f In this problem, neither the constant c nor its numerical value should appear in any of your answers. (1)How long does it take for a short pulse of light to travel from one end of the glass to the other?
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm...
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm apart and falls on a screen 75.0 cm away. How far away from the central bright fringe on the screen is a.) the fifth bright fringe (not counting the central bright fringe) b.) the eighth dark fringe 2. Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 3.00...
Monochromatic coherent light with a wavelength of 632.8nm is incident on a double slit system with...
Monochromatic coherent light with a wavelength of 632.8nm is incident on a double slit system with a slit separation of 0.15mm. What is the separation between the third bright spot from the center and the seventh bright spot from the center?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT