Question

In: Physics

A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with...

A(n) 43.1 g object moving to the right at 26.5 cm/s overtakes and collides elastically with a(n) 12.1 g object moving in the same direction at 18.9913 cm/s. Find the velocity of the first object immediately after the collision. Answer in units of cm/s.

Find the velocity of the second object immediately after the collision. Answer in units of cm/s.

Solutions

Expert Solution

Mass of first object,m1=43.1g

Mass of 2nd object,m2=12.1g

Initial velocity of 1st object,v1i=26.5 cm/s

Initial velocity of 2nd object,v2i=18.9913 cm/s

Let

Their final velocities are v1f and v2f.

According to principle of conservation of linear momentum.

linear momentum of system before collision =linear momentum of system after collision

m1v1i+m2v2i=m1v1f+m2v2f ..........................................(1)

According to principle of conservation of kinetic enenrgy

Kinetic energy of system before collision =Kinetic energy of system after collision

(1/2)m1v1i)2+(1/2)m2(v2i)2=(1/2)m1(v1f)2+(1/2)m2(v2f)2 ..........................................(2)

On solving (1) and(2)

v1f=[(m1-m2)/(m1+m2)]v1i+[(2m2)/(m1+m2)]v2i=[(43.1-12.1)/(43.1+12.1)]26.5+[(212.1)/((43.1+12.1))]18.9913=23.21 cm/s

v2f=[(2m1)/(m1+m2)]v1i-[(m1-m2)/(m1+m2)]v2i=[(243.1)/(43.1+12.1)]26.5-[(43.1-12.1)/(43.1+12.1)]18.9913=30.72 cm/s

So

velocity of the first object immediately after the collision.=23.21 cm/s

velocity of the 2ndobject immediately after the collision.=30.72 cm/s


Related Solutions

A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a...
A 30.0-g object moving to the right at 20.5 cm/s overtakes and collides elastically with a 11.0-g object moving in the same direction at 15.0 cm/s. Find the velocity of each object after the collision. (Take the positive direction to be to the right. Indicate the direction with the sign of your answer.)
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball...
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball (Ball B) moving at 4.00 m/s in the same direction. 1) Find the speed of Ball A after the collision. 2) Find the speed of Ball B after the collision.
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s...
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 25.0 g moving in the same direction with a speed of 17.0 cm/s. If the collision is elastic, determine the speed of each object after the collision. 25.0-g object cm/s 7.00-g object cm/s
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision...
A 5.00 g object moving to the right at +20.0 cm/s makes an elastic head-on collision with a 10.0 g object that is initially at rest. (a) Find the velocity of each object after the collision. cm/s (5.00 g object) cm/s (10.0 g object) (b) Find the fraction of the initial kinetic energy transferred to the 10.0 g object. %
A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision...
A 10.0 g object moving to the right at 15.0 cm/s makes an elastic head-on collision with a 15.0 g object moving in the opposite direction at 33.0 cm/s. Find the velocity of each object after the collision. 10.0g object _________ 15.0g object _________
An object of mass m is moving in +x direction at u velocity and collides elastically...
An object of mass m is moving in +x direction at u velocity and collides elastically with a stationery object in the x direction having a mass M. after the collision the object with mass m travels in +y direction and the object with mass M travels in a direction with an angle theeta to the x axes. find the value of theeta?
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two...
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two coupled railroad cars moving in the same direction at 1.20 m/s. All cars have a mass of mass 1.10 105 kg. Determine the following. (a) speed of the three coupled cars after the collision____ (Give your answer to at least two decimal places.) m/s (b) kinetic energy lost in the collision ___ J 2. A cue ball at rest on a frictionless pool table...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with a 450 g ball that is moving to the right at 1.0 m/s. A. If the collision is perfectly elastic, what is the speed of the 100 g ball after the collision? B. If the collision is perfectly elastic, what is the speed of the 450 g ball after the collision? Express your answer to two significant figures and include the appropriate units. I...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200...
A 100 g ball moving to the right at 4.0 m/s collides head-on with a 200 g ball that is moving to the left at 3.0 m/s. If the collision is perfectly elastic, what are the speeds of each ball after the collision? (Vfx)1 and (Vfx)2 What is the direction of 100-g ball after the collision? upward, downard, to the right, to the left? What is the direction of 200-g ball after the collision? upward, downward, to the right, to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT