In: Physics
An object with a mass of 7.00 g is moving to the right at 14.0 cm/s when it is overtaken by an object with a mass of 25.0 g moving in the same direction with a speed of 17.0 cm/s. If the collision is elastic, determine the speed of each object after the collision.
25.0-g object cm/s
7.00-g object cm/s
ELASTIC
m1 = 25 g m2 = 7 g
speeds before collision
u1 = 17 cm/s
u2 = 14 cm/s
speeds after collision
v1 =
?
v2 = ?
initial momentum before collision
Pi = m1*u1 + m2*u2
after collision final momentum
Pf = m1*v1 + m2*v2
from momentum conservation
total momentum is conserved
Pf = Pi
m1*u1 + m2*u2 = m1*v1 + m2*v2
m1*(u1-v1) = m2*(v2-u2) .....(1)
from energy conservation
total kinetic energy before collision = total kinetic
energy after collision
KEi = 0.5*m1*u1^2 + 0.5*m2*u2^2
KEf = 0.5*m1*v1^2 + 0.5*m2*v2^2
KEi = KEf
0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 +
0.5*m2*v2^2
0.5*m1*(u1^2-v1^2) = 0.5*m2*(v2^2-u2^2).....(2)
solving 1&2
we get
u1 + v1 = v2 + u2
u1 - u2 = v2-v1
v2 = u1 - u2 + v1 ..........(3)
using 3 in 1
v1 = ((m1-m2)*u1 + (2*m2*u2))/(m1+m2)
v2 = ((m2-m1)*u2 + (2*m1*u1))/(m1+m2)
-----------------
v1(25 g) = ((25-7)*17 + (2*7*15))/(7+25)
v1 (25 g )= 16.125 cm/s
v2 (7 .00-g) = ((7-25)*14 + (2*25*17))/(7+25)
v2 (7 .00-g) = 18.7 cm/s